Microwave-assisted pressureless sintering of silicon-reinforced boron carbide composites

被引:6
作者
Dyatkin, Boris [1 ]
Gamache, Raymond M. [2 ]
Rock, Benjamin Y.
Qadri, Syed B. [3 ]
Edelen, William K., III [4 ]
Laskoski, Matthew [1 ]
机构
[1] US Naval Res Lab, Chem Div, Code 6127, Washington, DC 20375 USA
[2] Naval Postgrad Sch, Dept Phys, Monterey, CA USA
[3] US Naval Res Lab, Mat Sci & Technol Div, Code 6351, Washington, DC USA
[4] US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA
关键词
Boron carbide; Refractory carbide; Microwave sintering; Nanocrystalline material; Elemental inclusion; MECHANICAL-PROPERTIES; FABRICATION; DENSIFICATION; CERAMICS; BEHAVIOR;
D O I
10.1016/j.jssc.2020.121659
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We report on a rapid sintering method that relies on gyrotron-produced millimeter wave irradiation to densify boron carbide monoliths. This microwave-assisted process requires a lower sintering temperature (<1400 degrees C) and no applied pressure. The rapid, 20-min long treatment yielded composites with densities that exceeded 95% compaction. Microwave sintering did not coarsen grains and retained a nanocrystalline structure of the boron carbide. We incorporated different ratios of silicon metal into the ceramic green-bodies via high-energy ball milling and determined the effects of these inclusions on the resulting properties of refractory carbide composites. We determined that silicon reacted with carbon in the 3-atom chain of boron carbide and formed cubic silicon carbide interstitial phases in a non-equilibrium process. Its optimal 11 wt % concentration maximized the relative hardness of the resulting monoliths. This rapid sintering mechanism and customizable ceramic matrix composite fabrication route are promising avenues for subsequent fabrication of refractory carbides with nanosized grains that will enable higher fracture toughness.
引用
收藏
页数:8
相关论文
共 64 条
[1]   PRESSURE-SINTERED SILICON CARBIDE [J].
ALLIEGRO, RA ;
COFFIN, LB ;
TINKLEPAUGH, JR .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1956, 39 (11) :386-389
[2]   Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility [J].
An, Qi ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (23) :4169-4174
[3]   Atomistic Explanation of Shear-Induced Amorphous Band Formation in Boron Carbide [J].
An, Qi ;
Goddard, William A., III ;
Cheng, Tao .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[4]   Isotope dependencies of Raman spectra of B12As2, B12P2, B12O2, and B12+xC3-x: Bonding of intericosahedral chains [J].
Aselage, TL ;
Tallant, DR ;
Emin, D .
PHYSICAL REVIEW B, 1997, 56 (06) :3122-3129
[5]   Conductivities and Seebeck coefficients of boron carbides: Softening bipolaron hopping [J].
Aselage, TL ;
Emin, D ;
McCready, SS .
PHYSICAL REVIEW B, 2001, 64 (05)
[6]   Shock-induced localized amorphization in boron carbide [J].
Chen, MW ;
McCauley, JW ;
Hemker, KJ .
SCIENCE, 2003, 299 (5612) :1563-1566
[7]   Formation and sintering mechanisms of reaction bonded silicon carbide-boron carbide composites [J].
Chen, Z. F. ;
Su, Y. C. ;
Cheng, Y. B. .
INNOVATION IN CERAMICS SCIENCE AND ENGINEERING, 2007, 352 :207-+
[8]   Structure and mechanical properties of boron-rich boron carbides [J].
Cheng, Chun ;
Reddy, Kolan. M. ;
Hirata, Akihiko ;
Fujita, Takeshi ;
Chen, Mingwei .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (15) :4514-4523
[9]   Improved ablation resistance of C-C composites using zirconium diboride and boron carbide [J].
Corral, Erica L. ;
Walker, Luke S. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (11) :2357-2364
[10]  
Dai J., 2019, Int. J. Ceram. Eng. Sci., V1, P178