Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease

被引:77
作者
Talwar, Puneet [1 ]
Silla, Yumnam [1 ]
Grover, Sandeep [1 ]
Gupta, Meenal [1 ]
Agarwal, Rachna [2 ]
Kushwaha, Suman [3 ]
Kukreti, Ritushree [1 ]
机构
[1] CSIR, IGIB, Genom & Mol Med Unit, Delhi 110007, India
[2] Inst Human Behav & Allied Sci, Dept Neurochem, Delhi, India
[3] Inst Human Behav & Allied Sci, Dept Neurol, Delhi, India
关键词
Gene prioritization; Protein-protein interaction; Clustering; Functional annotation; HUNTINGTIN INTERACTING PROTEIN-1; GROWTH-FACTOR RECEPTOR; APOLIPOPROTEIN-E LEVEL; AMYLOID-BETA; CEREBROSPINAL-FLUID; WIDE ASSOCIATION; SUBCELLULAR-LOCALIZATION; DIFFERENTIAL REGULATION; COMPREHENSIVE NETWORK; COGNITIVE IMPAIRMENT;
D O I
10.1186/1471-2164-15-199
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Alzheimer's disease (AD) is one of the leading genetically complex and heterogeneous disorder that is influenced by both genetic and environmental factors. The underlying risk factors remain largely unclear for this heterogeneous disorder. In recent years, high throughput methodologies, such as genome-wide linkage analysis (GWL), genome-wide association (GWA) studies, and genome-wide expression profiling (GWE), have led to the identification of several candidate genes associated with AD. However, due to lack of consistency within their findings, an integrative approach is warranted. Here, we have designed a rank based gene prioritization approach involving convergent analysis of multi-dimensional data and protein-protein interaction (PPI) network modelling. Results: Our approach employs integration of three different AD datasets-GWL, GWA and GWE to identify overlapping candidate genes ranked using a novel cumulative rank score (S-R) based method followed by prioritization using clusters derived from PPI network. S-R for each gene is calculated by addition of rank assigned to individual gene based on either p value or score in three datasets. This analysis yielded 108 plausible AD genes. Network modelling by creating PPI using proteins encoded by these genes and their direct interactors resulted in a layered network of 640 proteins. Clustering of these proteins further helped us in identifying 6 significant clusters with 7 proteins (EGFR, ACTB, CDC2, IRAK1, APOE, ABCA1 and AMPH) forming the central hub nodes. Functional annotation of 108 genes revealed their role in several biological activities such as neurogenesis, regulation of MAP kinase activity, response to calcium ion, endocytosis paralleling the AD specific attributes. Finally, 3 potential biochemical biomarkers were found from the overlap of 108 AD proteins with proteins from CSF and plasma proteome. EGFR and ACTB were found to be the two most significant AD risk genes. Conclusions: With the assumption that common genetic signals obtained from different methodological platforms might serve as robust AD risk markers than candidates identified using single dimension approach, here we demonstrated an integrated genomic convergence approach for disease candidate gene prioritization from heterogeneous data sources linked to AD.
引用
收藏
页数:16
相关论文
共 147 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[2]   Increased expression of cholesterol transporter ABCA1 is highly correlated with severity of dementia in AD hippocampus [J].
Akram, Afia ;
Schmeidler, James ;
Katsel, Pavel ;
Hof, Patrick R. ;
Haroutunian, Vahram .
BRAIN RESEARCH, 2010, 1318 :167-177
[3]  
[Anonymous], 2000, GRAPH CLUSTERING FLO
[4]   The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer's disease [J].
Antunez, Carmen ;
Boada, Merce ;
Gonzalez-Perez, Antonio ;
Gayan, Javier ;
Ramirez-Lorca, Reposo ;
Marin, Juan ;
Hernandez, Isabel ;
Moreno-Rey, Concha ;
Jesus Moron, Francisco ;
Lopez-Arrieta, Jesus ;
Mauleon, Ana ;
Rosende-Roca, Maitee ;
Noguera-Perea, Fuensanta ;
Legaz-Garcia, Agustina ;
Vivancos-Moreau, Laura ;
Velasco, Juan ;
Miguel Carrasco, Jose ;
Alegret, Montserrat ;
Antequera-Torres, Martirio ;
Manzanares, Salvadora ;
Romo, Alejandro ;
Blanca, Irene ;
Ruiz, Susana ;
Espinosa, Anna ;
Castano, Sandra ;
Garcia, Blanca ;
Martinez-Herrada, Begona ;
Vinyes, Georgina ;
Lafuente, Asuncion ;
Becker, James T. ;
Jorge Galan, Jose ;
Serrano-Rios, Manuel ;
Vazquez, Enrique ;
Tarraga, Lluis ;
Eugenia Saez, Maria ;
Lopez, Oscar L. ;
Miguel Real, Luis ;
Ruiz, Agustin .
GENOME MEDICINE, 2011, 3
[5]   Computing topological parameters of biological networks [J].
Assenov, Yassen ;
Ramirez, Fidel ;
Schelhorn, Sven-Eric ;
Lengauer, Thomas ;
Albrecht, Mario .
BIOINFORMATICS, 2008, 24 (02) :282-284
[6]   A New Methodology to Associate SNPs with Human Diseases According to Their Pathway Related Context [J].
Bakir-Gungor, Burcu ;
Sezerman, Osman Ugur .
PLOS ONE, 2011, 6 (10)
[7]   Cytoskeletal Pathologies of Alzheimer Disease [J].
Bamburg, James R. ;
Bloom, George S. .
CELL MOTILITY AND THE CYTOSKELETON, 2009, 66 (08) :635-649
[8]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[9]   Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation [J].
Barsky, Aaron ;
Gardy, Jennifer L. ;
Hancock, Robert E. W. ;
Munzner, Tamara .
BIOINFORMATICS, 2007, 23 (08) :1040-1042
[10]   Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database [J].
Bertram, Lars ;
McQueen, Matthew B. ;
Mullin, Kristina ;
Blacker, Deborah ;
Tanzi, Rudolph E. .
NATURE GENETICS, 2007, 39 (01) :17-23