Spectrally selective imaging with wideband balanced steady-state free precession MRI

被引:4
|
作者
Cukur, Tolga [1 ,2 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, Room 304, TR-06800 Ankara, Turkey
[2] Bilkent Univ, Natl Magnet Resonance Res Ctr, TR-06800 Ankara, Turkey
关键词
steady-state free precession; spectral; selectivity; RF pulse; excitation; fat suppression; wideband; POSITIVE CONTRAST; WATER SEPARATION; FAT; SSFP; QUANTIFICATION; SUPPRESSION; TRANSIENT; SEQUENCES; TRUEFISP; T-1;
D O I
10.1002/mrm.25700
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeUnwanted, bright fat signals in balanced steady-state free precession sequences are commonly suppressed using spectral shaping. Here, a new spectral-shaping method is proposed to significantly improve the uniformity of stopband suppression without compromising the level of passband signals. MethodsThe proposed method combines binomial-pattern excitation pulses with a wideband balanced steady-state free precession sequence kernel. It thereby increases the frequency separation between the centers of pass and stopbands by radians, enabling improved water-fat contrast. Simulations were performed to find the optimal flip angles and subpulse spacing for the binomial pulses that maximize contrast and signal efficiency. ResultsComparisons with a conventional binomial balanced steady-state free precession sequence were performed in simulations as well as phantom and in vivo experiments at 1.5 T and 3 T. Enhanced fat suppression is demonstrated in vivo with an average improvement of 58% in blood-fat and 68% in muscle-fat contrast (P<0.001, Wilcoxon signed-rank test). ConclusionThe proposed binomial wideband balanced steady-state free precession method is a promising candidate for spectrally selective imaging with enhanced reliability against field inhomogeneities. Magn Reson Med 75:1132-1141, 2016. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1132 / 1141
页数:10
相关论文
共 50 条
  • [31] CMR Imaging of Edema in Myocardial Infarction Using Cine Balanced Steady-State Free Precession
    Kumar, Andreas
    Beohar, Nirat
    Arumana, Jain Mangalathu
    Larose, Eric
    Li, Debiao
    Friedrich, Matthias G.
    Dharmakumar, Rohan
    JACC-CARDIOVASCULAR IMAGING, 2011, 4 (12) : 1265 - 1273
  • [32] Motion resilience of the balanced steady-state free precession geometric solution
    Hoff, Michael N.
    Xiang, Qing-San
    Cross, Nathan M.
    Hippe, Daniel
    Andre, Jalal B.
    MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (01) : 192 - 204
  • [33] Cardiac balanced steady-state free precession MRI at 0.35 T: a comparison study with 1.5 T
    Rashid, Shams
    Han, Fei
    Gao, Yu
    Sung, Kyunghyun
    Cao, Minsong
    Yang, Yingli
    Hu, Peng
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2018, 8 (07) : 627 - 636
  • [34] Unbiased signal equation for quantitative magnetization transfer mapping in balanced steady-state free precession MRI
    Bayer, Fritz M.
    Bock, Michael
    Jezzard, Peter
    Smith, Alex K.
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (01) : 446 - 456
  • [35] Enhanced spectral shaping in steady-state free precession imaging
    Cukur, Tolga
    Bangerter, Neal K.
    Nishimura, Dwight G.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) : 1216 - 1223
  • [36] Flow artifacts in steady-state free precession cine imaging
    Storey, P
    Li, W
    Chen, Q
    Edelman, RR
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) : 115 - 122
  • [37] MOTION-INSENSITIVE, STEADY-STATE FREE PRECESSION IMAGING
    ZUR, Y
    WOOD, ML
    NEURINGER, LJ
    MAGNETIC RESONANCE IN MEDICINE, 1990, 16 (03) : 444 - 459
  • [38] Frequency-modulated steady-state free precession imaging
    Foxall, DL
    MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (03) : 502 - 508
  • [39] STEADY-STATE FREE PRECESSION IMAGING OF THE INNER-EAR
    STILLMAN, AE
    REMLEY, K
    LOES, DJ
    HU, XP
    LATCHAW, RE
    AMERICAN JOURNAL OF NEURORADIOLOGY, 1994, 15 (02) : 348 - 350
  • [40] RAPID FOURIER-IMAGING WITH STEADY-STATE FREE PRECESSION
    PATZ, S
    HAWKES, RC
    INVESTIGATIVE RADIOLOGY, 1986, 21 (09) : S35 - S35