Energy consumption analysis for various memristive networks under different learning strategies

被引:32
作者
Deng, Lei [1 ]
Wang, Dong [1 ]
Zhang, Ziyang [2 ]
Tang, Pei [2 ]
Li, Guoqi [1 ]
Pei, Jing [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Precis Instrument, CBICR, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Precis Instrument, Opt Memory Natl Engn Res Ctr, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Memristor; Energy consumption; Neuromorphic engineering; Neural networks; Brain-inspired computation; NEURAL-NETWORK; SYNAPSE; DEVICE; SYSTEM; SPINNAKER;
D O I
10.1016/j.physleta.2015.12.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, various memristive systems emerge to emulate the efficient computing paradigm of the brain cortex; whereas, how to make them energy efficient still remains unclear, especially from an overall perspective. Here, a systematical and bottom-up energy consumption analysis is demonstrated, including the memristor device level and the network learning level. We propose an energy estimating methodology when modulating the memristive synapses, which is simulated in three typical neural networks with different synaptic structures and learning strategies for both offline and online learning. These results provide an in-depth insight to create energy efficient brain-inspired neuromorphic devices in the future. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:903 / 909
页数:7
相关论文
共 35 条
[1]   Memristor Bridge Synapse-Based Neural Network and Its Learning [J].
Adhikari, Shyam Prasad ;
Yang, Changju ;
Kim, Hyongsuk ;
Chua, Leon O. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (09) :1426-1435
[2]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[3]   A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing [J].
Alibart, Fabien ;
Pleutin, Stephane ;
Bichler, Olivier ;
Gamrat, Christian ;
Serrano-Gotarredona, Teresa ;
Linares-Barranco, Bernabe ;
Vuillaume, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (03) :609-616
[4]  
[Anonymous], 1989, Analog VLSI Implementation of Neural Systems , The Kluwer International Series in Engineering and Computer Science
[5]  
[Anonymous], P BIOMEDICAL ENG SOC
[6]  
Arthur J., 2006, ADV NEURAL INFORM PR, P75
[7]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[8]   Complex Learning in Bio-plausible Memristive Networks [J].
Deng, Lei ;
Li, Guoqi ;
Deng, Ning ;
Wang, Dong ;
Zhang, Ziyang ;
He, Wei ;
Li, Huanglong ;
Pei, Jing ;
Shi, Luping .
SCIENTIFIC REPORTS, 2015, 5
[9]   The SpiNNaker Project [J].
Furber, Steve B. ;
Galluppi, Francesco ;
Temple, Steve ;
Plana, Luis A. .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :652-665
[10]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507