Demonstration that there does not exist a solution to he minimal surfaces equation

被引:4
作者
Mazet, L [1 ]
机构
[1] Univ Toulouse 3, Lab Emile Picard, UMR 5580, F-31062 Toulouse 04, France
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2004年 / 128卷 / 07期
关键词
D O I
10.1016/j.bulsci.2004.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove that there does not exist a solution u of the minimal surfaces equation on a domain, which is asymptoticaly an angular sector, and taking the value +infinity on one side and -infinity on the other. (C) 2004 Elsevier SAS. Tous droits reserves.
引用
收藏
页码:577 / 586
页数:10
相关论文
共 10 条
[1]   DIRICHLET PROBLEM FOR MINIMAL SURFACE EQUATION ON UNBOUNDED-DOMAINS [J].
COLLIN, P ;
KRUST, R .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (04) :443-462
[2]  
EARP RS, 1989, J MATH PURE APPL, V68, P163
[3]   THE STRONG HALF-SPACE THEOREM FOR MINIMAL-SURFACES [J].
HOFFMAN, D ;
MEEKS, WH .
INVENTIONES MATHEMATICAE, 1990, 101 (02) :373-377
[4]  
JENKINS H, 1966, ARCH RATION MECH AN, V21, P321
[6]  
MAZET L, IN PRESS J I MATH JU
[7]  
MAZET L, PLATEAU PROBLEM INFI, P1
[8]   ON NEW RESULTS IN THEORY OF MINIMAL SURFACES [J].
NITSCHE, JCC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 71 (02) :195-&
[9]   GLOBAL PROPERTIES OF MINIMAL SURFACES IN E3 + EN [J].
OSSERMAN, R .
ANNALS OF MATHEMATICS, 1964, 80 (02) :340-&
[10]  
OSSERMAN R, 1969, VANNOSTRAND MATH STU