Acyclic Edge Coloring of Graphs with Maximum Degree 4

被引:37
作者
Basavaraju, Manu [1 ]
Chandran, L. Sunill [1 ]
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
关键词
acyclic edge coloring; acyclic edge chromatic number; CHROMATIC-NUMBERS; PLANAR GRAPHS;
D O I
10.1002/jgt.20376
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a'(G) <= Delta+2, where Delta=Delta(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Delta(G)<= 4, with the additional restriction that m <= 2n-1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m <= 2n, when Delta(G)<= 4. It follows that for any graph G if Delta(G)<= 4, then a'(G) <= 7. (c) 2009 Wiley Periodicals, Inc. J Graph Theory 61: 192-209, 2009
引用
收藏
页码:192 / 209
页数:18
相关论文
共 21 条
[1]   Algorithmic aspects of acyclic edge colorings [J].
Alon, N ;
Zaks, A .
ALGORITHMICA, 2002, 32 (04) :611-614
[2]   Acyclic edge colorings of graphs [J].
Alon, N ;
Sudakov, B ;
Zaks, A .
JOURNAL OF GRAPH THEORY, 2001, 37 (03) :157-167
[3]  
Alon N., 1991, RANDOM STRUCT ALGOR, V2, P343
[4]   All-to-all wavelength-routing in all-optical compound networks [J].
Amar, D ;
Raspaud, A ;
Togni, O .
DISCRETE MATHEMATICS, 2001, 235 (1-3) :353-363
[5]  
BASAVARAJU M, D REGULAR GRAP UNPUB
[6]   Acyclic edge coloring of subcubic graphs [J].
Basavaraju, Manu ;
Chandran, L. Sunil .
DISCRETE MATHEMATICS, 2008, 308 (24) :6650-6653
[7]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
BORODIN, OV .
DISCRETE MATHEMATICS, 1979, 25 (03) :211-236
[8]  
Burnstein M.I., 1979, SOOBSC AKAD NAUK GRU, V93, P21
[9]  
DIESTEL R., 2000, Graduate Texts in Mathematics, V173, DOI 10.4171/OWR/2013/02
[10]  
Fiamcik J., 1978, Math Slovaca, V28, P139