The bounded derived categories of an algebra with radical squared zero

被引:13
作者
Bautista, Raymundo [1 ]
Liu, Shiping [2 ]
机构
[1] UNAM, Inst Matemat, Unidad Morelia, Apartado Postal 61-3, Morelia 58089, Michoacan, Mexico
[2] Univ Sherbrooke, Dept Math, Sherbrooke, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Representations of a quiver; Modules over a linear category; Triangulated categories; Derived categories; Irreducible morphisms; Almost split sequences; Almost split triangle; Auslander-Reiten quiver; Galois covering; REPRESENTATION-THEORY; SPLIT-SEQUENCES;
D O I
10.1016/j.jalgebra.2017.04.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an elementary locally bounded linear category over a field with radical squared zero. We shall show that the bounded derived category D-b(Mod(b) Lambda) of finitely supported left Lambda-modules admits a Galois covering which is the bounded derived category of almost finitely co-presented representations of a gradable quiver. Restricting to the bounded derived category D-b(mod(b)Lambda) of finite dimensional left Lambda-modules, we shall be able to describe its indecomposable objects, obtain a complete description of the shapes of its Auslander-Reiten components, and classify those A such that D-b(mod(b)Lambda) has only finitely many Auslander Reiten components. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:303 / 345
页数:43
相关论文
共 29 条
[1]  
Anderson F.W., 1992, GRADUATE TEXTS MATH, V13
[2]   A covering technique for derived equivalence [J].
Asashiba, H .
JOURNAL OF ALGEBRA, 1997, 191 (01) :382-415
[3]   A generalization of Gabriel's Galois covering functors and derived equivalences [J].
Asashiba, Hideto .
JOURNAL OF ALGEBRA, 2011, 334 (01) :109-149
[4]   REPRESENTATION THEORY OF ARTIN ALGEBRAS .4. INVARIANTS GIVEN BY ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1977, 5 (05) :443-518
[5]   Idempotent completion of triangulated categories [J].
Balmer, P ;
Schlichting, M .
JOURNAL OF ALGEBRA, 2001, 236 (02) :819-834
[6]  
Bautista R., 1982, Ann. Inst. Math. Univ. Nac. Auto. Mex., P83
[7]   Covering theory for linear categories with application to derived categories [J].
Bautista, Raymundo ;
Liu, Shiping .
JOURNAL OF ALGEBRA, 2014, 406 :173-225
[8]   Representation theory of strongly locally finite quivers [J].
Bautista, Raymundo ;
Liu, Shiping ;
Paquette, Charles .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 :97-162
[9]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[10]   Indecomposables in derived categories of gentle algebras [J].
Bekkert, V ;
Merklen, HA .
ALGEBRAS AND REPRESENTATION THEORY, 2003, 6 (03) :285-302