Object Tracking with Blocked Color Histogram

被引:0
作者
Chen, Xiaoyu [1 ]
Bai, Lianfa [1 ]
Zhang, Yi [1 ]
Han, Jing [1 ]
机构
[1] Nanjing Univ Sci & Technol, Jiangsu Key Lab Spectral Imaging & Intelligent Se, Nanjing 210094, Peoples R China
来源
IMAGE AND GRAPHICS (ICIG 2017), PT I | 2017年 / 10666卷
关键词
Visual tracking; Blocked color histogram; Double-layer structure; Mean shift; MEAN SHIFT;
D O I
10.1007/978-3-319-71607-7_34
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Object deformation and blur are challenging problems in visual object tracking. Most existing methods increase the generalization of the features to decrease the sensitivity of spatial structure or combine statistical feature and spatial structure feature. This paper presents a novel approach to add structure characteristics to color histograms with blocked color histogram (BCH) to increase the robustness of trackers based on color histogram especially in deformation or blur problems. The proposed approach works by computing color histograms of every blocks extracted from given boxes. We strengthen structure characteristics by separating the whole box to several parts and use the color histogram of the individual parts to track, then weighting the results, and the result shows that this improves the performance compared to the methods using the whole color histogram. We also use double layer structure to speed up the method with the necessary accuracy. The proposed method gets good score in VOT2015 and VOT2016.
引用
收藏
页码:386 / 396
页数:11
相关论文
共 18 条
  • [1] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [2] Improved mean shift integrating texture and color features for robust real time object tracking
    Bousetouane, Fouad
    Dib, Lynda
    Snoussi, Hichem
    [J]. VISUAL COMPUTER, 2013, 29 (03) : 155 - 170
  • [3] MEAN SHIFT, MODE SEEKING, AND CLUSTERING
    CHENG, YZ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (08) : 790 - 799
  • [4] Mean shift: A robust approach toward feature space analysis
    Comaniciu, D
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) : 603 - 619
  • [5] Danelljan M., 2014, Proceedings of the British Machine Vision Conference (BMVC)
  • [6] Adaptive Color Attributes for Real-Time Visual Tracking
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    van de Weijer, Joost
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1090 - 1097
  • [7] Visual Tracking via Locality Sensitive Histograms
    He, Shengfeng
    Yang, Qingxiong
    Lau, Rynson W. H.
    Wang, Jiang
    Yang, Ming-Hsuan
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2427 - 2434
  • [8] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596
  • [9] DIVERGENCE AND BHATTACHARYYA DISTANCE MEASURES IN SIGNAL SELECTION
    KAILATH, T
    [J]. IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY, 1967, CO15 (01): : 52 - &
  • [10] Tracking-Learning-Detection
    Kalal, Zdenek
    Mikolajczyk, Krystian
    Matas, Jiri
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1409 - 1422