Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

被引:88
作者
Zhang, Yi [1 ,2 ]
Zhang, Yanfang [1 ,2 ]
Li, Geng [1 ,2 ]
Lu, Jianchen [1 ,2 ]
Lin, Xiao [3 ,4 ]
Du, Shixuan [1 ,2 ]
Berger, Reinhard [5 ]
Feng, Xinliang [5 ]
Muellen, Klaus [5 ]
Gao, Hong-Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100049, Peoples R China
[5] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
关键词
BAND-GAP; SURFACE;
D O I
10.1063/1.4884359
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02 eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 30 条
[1]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Aligning the Band Gap of Graphene Nanoribbons by Monomer Doping [J].
Bronner, Christopher ;
Stremlau, Stephan ;
Gille, Marie ;
Brausse, Felix ;
Haase, Anton ;
Hecht, Stefan ;
Tegeder, Petra .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (16) :4422-4425
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors [J].
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Pedramrazi, Zahra ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. .
ACS NANO, 2013, 7 (07) :6123-6128
[6]   Adsorption behavior of iron phthalocyanine on Au(111) surface at submonolayer coverage [J].
Cheng, Z. H. ;
Gao, L. ;
Deng, Z. T. ;
Jiang, N. ;
Liu, Q. ;
Shi, D. X. ;
Du, S. X. ;
Guo, H. M. ;
Gao, H.-J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (26) :9240-9244
[7]   Intrinsic Half-Metallicity in Modified Graphene Nanoribbons [J].
Dutta, Sudipta ;
Manna, Arun K. ;
Pati, Swapan K. .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[8]   Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-assembly, and applications [J].
Gao, H. -J. ;
Gao, Li .
PROGRESS IN SURFACE SCIENCE, 2010, 85 (1-4) :28-91
[9]   Spin and band-gap engineering in doped graphene nanoribbons [J].
Gorjizadeh, Narjes ;
Farajian, Amir A. ;
Esfarjani, Keivan ;
Kawazoe, Yoshiyuki .
PHYSICAL REVIEW B, 2008, 78 (15)
[10]   Nano-architectures by covalent assembly of molecular building blocks [J].
Grill, Leonhard ;
Dyer, Matthew ;
Lafferentz, Leif ;
Persson, Mats ;
Peters, Maike V. ;
Hecht, Stefan .
NATURE NANOTECHNOLOGY, 2007, 2 (11) :687-691