Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy

被引:47
作者
Figueroa-Espada, Christian G. [1 ]
Hofbauer, Samuel [1 ]
Mitchell, Michael J. [1 ,3 ,4 ,5 ,6 ]
Riley, Rachel S. [1 ,2 ]
机构
[1] Univ Penn, Dept Bioengn, 210 South 33rd St, Philadelphia, PA 19104 USA
[2] Rowan Univ, Dept Biomed Engn, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA
[3] Univ Penn, Perelman Sch Med, Abramson Canc Ctr, Philadelphia, PA 19104 USA
[4] Univ Penn, Inst Immunol, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Cardiovasc Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Inst Regenerat Med, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Placenta; Drug delivery technologies; Nanoparticle; Pregnancy; Active targeting; Pre-eclampsia; IN-VITRO; GOLD NANOPARTICLES; CATIONIC LIPIDS; P-GLYCOPROTEIN; GENE-TRANSFER; QUANTUM DOTS; PLASMID DNA; TRANSPORT; MODEL; MICE;
D O I
10.1016/j.addr.2020.09.006
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A major challenge to treating diseases during pregnancy is that small molecule therapeutics are transported through the placenta and incur toxicities to the developing fetus. The placenta is responsible for providing nutrients, removing waste, and protecting the fetus from toxic substances. Thus, the placenta acts as a biological barrier between the mother and fetus that can be exploited for drug delivery. Nanoparticle technologies provide the opportunity for safe drug delivery during pregnancy by controlling how therapeutics interact with the placenta. In this Review, we present nanoparticle drug delivery technologies specifically designed to exploit the placenta as a biological barrier to treat maternal, placental, or fetal diseases exclusively, while minimizing off-target toxicities. Further, we discuss opportunities, challenges, and future directions for implementing drug delivery technologies during pregnancy. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:244 / 261
页数:18
相关论文
共 151 条
[51]   Could peptide-decorated nanoparticles provide an improved approach for treating pregnancy complications? [J].
Harris, Lynda K. .
NANOMEDICINE, 2016, 11 (17) :2235-2238
[52]   Maternal-placental-fetal biodistribution of multimodal polymeric nanoparticles in a pregnant rat model in mid and late gestation [J].
Ho, Diwei ;
Leong, Joan W. ;
Crew, Rachael C. ;
Norret, Marck ;
House, Michael J. ;
Mark, Peter J. ;
Waddell, Brendan J. ;
Iyer, K. Swaminathan ;
Keelan, Jeffrey A. .
SCIENTIFIC REPORTS, 2017, 7
[53]   Nanoparticles can cross mouse placenta and induce trophoblast apoptosis [J].
Huang, Jian-Pei ;
Hsieh, Patrick C. H. ;
Chen, Chen-Yu ;
Wang, Tao-Yeuan ;
Chen, Pei-Chun ;
Liu, Chang-Ching ;
Chen, Chen-Chun ;
Chen, Chie-Pein .
PLACENTA, 2015, 36 (12) :1433-1441
[54]   Glucose transporters in the human placenta [J].
Illsley, NP .
PLACENTA, 2000, 21 (01) :14-22
[55]   Design of nanomaterials for applications in maternal/fetal medicine [J].
Irvin-Choy, N'dea S. ;
Nelson, Katherine M. ;
Gleghorn, Jason P. ;
Day, Emily S. .
JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (31) :6548-6561
[56]   Adipose Tissue Exosomal Proteomic Profile Reveals a Role on Placenta Glucose Metabolism in Gestational Diabetes Mellitus [J].
Jayabalan, Nanthini ;
Lai, Andrew ;
Ormazabal, Valeska ;
Adam, Stefanie ;
Guanzon, Dominic ;
Palma, Carlos ;
Scholz-Romero, Katherin ;
Lim, Ratana ;
Jansson, Thomas ;
McIntyre, Harold David ;
Lappas, Martha ;
Salomon, Carlos .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2019, 104 (05) :1735-1752
[57]  
Joshi MD, 2017, THER DELIV, V8, P1023, DOI 10.4155/tde-2017-0084
[58]   Targeted Nanoparticle Delivery of Doxorubicin Into Placental Tissues to Treat Ectopic Pregnancies [J].
Kaitu'u-Lino, Tu'uhevaha J. ;
Pattison, Scott ;
Ye, Louie ;
Tuohey, Laura ;
Sluka, Pavel ;
MacDiarmid, Jennifer ;
Brahmbhatt, Himanshu ;
Johns, Terrence ;
Horne, Andrew W. ;
Brown, Jeremy ;
Tong, Stephen .
ENDOCRINOLOGY, 2013, 154 (02) :911-919
[59]  
Keelan JA, 2015, NANOMEDICINE-UK, V10, P2229, DOI [10.2217/NNM.15.48, 10.2217/nnm.15.48]
[60]   Dendrimer-Inspired Nanomaterials for the in Vivo Delivery of siRNA to Lung Vasculature [J].
Khan, Omar F. ;
Zaia, Edmond W. ;
Jhunjhunwala, Siddharth ;
Xue, Wen ;
Cai, Wenxin ;
Yun, Dong Soo ;
Barnes, Carmen M. ;
Dahlman, James E. ;
Dong, Yizhou ;
Pelet, Jeisa M. ;
Webber, Matthew J. ;
Tsosie, Jonathan K. ;
Jacks, Tyler E. ;
Langer, Robert ;
Anderson, Daniel G. .
NANO LETTERS, 2015, 15 (05) :3008-3016