MERSENNE k-FIBONACCI NUMBERS

被引:0
作者
Bravo, Jhon J. [1 ]
Gomez, Carlos A. [2 ]
机构
[1] Univ Cauca, Dept Matemat, Calle 5 4-70, Popayan, Colombia
[2] Univ Valle, Dept Matemat, Calle 13 100-00, Cali, Colombia
关键词
Generalized Fibonacci numbers; Mersenne numbers; linear forms in logarithms; reduction method; CONJECTURE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an integer k >= 2, let (F-n((k)))(n) be the k-Fibonacci sequence which starts with 0,..., 0, 1 (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all k-Fibonacci numbers which are Mersenne numbers, i.e., k-Fibonacci numbers that are equal to 1 less than a power of 2. As a consequence, for each fixed k, we prove that there is at most one Mersenne prime in (F-n((k)))n.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 17 条
[1]   POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS [J].
Bravo, Jhon J. ;
Gomez, Carlos A. ;
Luca, Florian .
MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) :85-100
[2]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[3]   ON THE LARGEST PRIME FACTOR OF THE k-FIBONACCI NUMBERS [J].
Bravo, Jhon J. ;
Luca, Florian .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) :1351-1366
[4]  
BRAVO JHON J., 2012, Rev.colomb.mat., V46, P67
[5]   Coincidences in generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
JOURNAL OF NUMBER THEORY, 2013, 133 (06) :2121-2137
[6]  
Dresden GPB, 2014, J INTEGER SEQ, V17
[7]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[8]   On the largest prime factor of the ratio of two generalized Fibonacci numbers [J].
Gomez Ruiz, Carlos Alexis ;
Luca, Florian .
JOURNAL OF NUMBER THEORY, 2015, 152 :182-203
[9]  
Howard FT, 2011, FIBONACCI QUART, V49, P231
[10]  
Hua L-K, 2012, Applications of Number Theory to Numerical Analysis