High-resolution magnetohydrodynamic equilibrium code for unity beta plasmas

被引:13
作者
Gourdain, PA [1 ]
Leboeuf, JN [1 ]
Neches, RY [1 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA
关键词
magnetohydrodynamics; plasma; tokamak; high; beta; unity; equilibrium; multigrid; Shafranov;
D O I
10.1016/j.jcp.2005.12.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
There is great interest in the properties of extremely high-beta magnetohydrodynamic equilibria in axisymmetric toroidal geometry and the stability of such equilibria. However, few equilibrium codes maintain solid numerical behavior as beta approaches unity. The free-boundary algorithm presented herein utilizes a numerically stabilized multigrid method, current density input, position control, magnetic axis search, and dynamically adjusted simulated annealing. This approach yields numerically robust behavior in the spectrum of cases ranging from low to very high-beta configurations. As the convergence time depends linearly on the total number of grid points, the production of extremely fine, low-error equilibria becomes possible. Such a code facilitates a variety of intriguing applications which include the exploration of the stability of extreme Shafranov shift equilibria. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 299
页数:25
相关论文
共 33 条
  • [1] ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS, P591
  • [2] THE SELF-CONSISTENT EQUILIBRIUM AND DIFFUSION CODE SCED
    BLUM, J
    LEFOLL, J
    THOORIS, B
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1981, 24 (3-4) : 235 - 254
  • [3] BLUM J., 1989, Numerical Simulation and Optimal Control in Plasma Physics with Application to Tokamaks
  • [4] BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
  • [5] MAGNETOHYDRODYNAMIC EQUILIBRIA IN SHARPLY CURVED AXISYMMETRIC DEVICES
    CALLEN, JD
    DORY, RA
    [J]. PHYSICS OF FLUIDS, 1972, 15 (08) : 1523 - +
  • [6] An Eulerian gyrokinetic-Maxwell solver
    Candy, J
    Waltz, RE
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) : 545 - 581
  • [7] Chen F. F., 1984, INTRO PLASMA PHYS CO
  • [8] AN ITERATIVE METRIC METHOD FOR SOLVING THE INVERSE TOKAMAK EQUILIBRIUM PROBLEM
    DELUCIA, J
    JARDIN, SC
    TODD, AMM
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 37 (02) : 183 - 204
  • [9] Comparisons and physics basis of tokamak transport models and turbulence simulations
    Dimits, AM
    Bateman, G
    Beer, MA
    Cohen, BI
    Dorland, W
    Hammett, GW
    Kim, C
    Kinsey, JE
    Kotschenreuther, M
    Kritz, AH
    Lao, LL
    Mandrekas, J
    Nevins, WM
    Parker, SE
    Redd, AJ
    Shumaker, DE
    Sydora, R
    Weiland, J
    [J]. PHYSICS OF PLASMAS, 2000, 7 (03) : 969 - 983
  • [10] Freidberg J. P., 1987, Ideal Magnetohydrodynamics