High-throughput prediction of the ground-state collinear magnetic order of inorganic materials using Density Functional Theory

被引:102
|
作者
Horton, Matthew Kristofer [1 ]
Montoya, Joseph Harold [1 ]
Liu, Miao [2 ]
Persson, Kristin Aslaug [1 ,3 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[2] Chinese Acad Sci, Inst Phys, Beijing, Peoples R China
[3] Univ Calif Berkeley, Dept Mat, Sci, Berkeley, CA 94720 USA
关键词
NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE; ELECTRONIC-PROPERTIES; SCATTERING; OXIDES; PHASE; REDETERMINATION; MULTIFERROICS; SPINTRONICS; TEMPERATURE;
D O I
10.1038/s41524-019-0199-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a robust, automatic high-throughput workflow for the calculation of magnetic ground state of solid-state inorganic crystals, whether ferromagnetic, antiferromagnetic or ferrimagnetic, and their associated magnetic moments within the framework of collinear spin-polarized Density Functional Theory. This is done through a computationally efficient scheme whereby plausible magnetic orderings are first enumerated and prioritized based on symmetry, and then relaxed and theft energies determined through conventional DFT + U calculations. This automated workflow is formalized using the atomate code for reliable, systematic use at a scale appropriate for thousands of materials and is fully customizable. The performance of the workflow is evaluated against a benchmark of 64 experimentally known mostly ionic magnetic materials of non-trivial magnetic order and by the calculation of over 500 distinct magnetic orderings. A non-ferromagnetic ground state is correctly predicted in 95% of the benchmark materials, with the experimentally determined ground state ordering found exactly in over 60% of cases. Knowledge of the ground state magnetic order at scale opens up the possibility of high-throughput screening studies based on magnetic properties, thereby accelerating discovery and understanding of new functional materials.
引用
收藏
页数:11
相关论文
共 14 条
  • [1] High-throughput first-principle prediction of collinear magnetic topological materials
    Su, Yunlong
    Hu, Jiayu
    Cai, Xiaochan
    Shi, Wujun
    Xia, Yunyouyou
    Xu, Yuanfeng
    Xu, Xuguang
    Chen, Yulin
    Li, Gang
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [2] Ground-state magnetic structure of hexagonal YMnO3 compound: A non-collinear spin density functional theory study
    Lima, A. F.
    Lalic, M. V.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 416 : 236 - 240
  • [3] A high-throughput infrastructure for density functional theory calculations
    Jain, Anubhav
    Hautier, Geoffroy
    Moore, Charles J.
    Ong, Shyue Ping
    Fischer, Christopher C.
    Mueller, Tim
    Persson, Kristin A.
    Ceder, Gerbrand
    COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (08) : 2295 - 2310
  • [4] Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
    Saal, James E.
    Kirklin, Scott
    Aykol, Muratahan
    Meredig, Bryce
    Wolverton, C.
    JOM, 2013, 65 (11) : 1501 - 1509
  • [5] Quantifying uncertainty in high-throughput density functional theory: A comparison of AFLOW, Materials Project, and OQMD
    Hegde, Vinay I.
    Borg, Christopher K. H.
    del Rosario, Zachary
    Kim, Yoolhee
    Hutchinson, Maxwell
    Antono, Erin
    Ling, Julia
    Saxe, Paul
    Saal, James E.
    Meredig, Bryce
    PHYSICAL REVIEW MATERIALS, 2023, 7 (05)
  • [6] Ground-state properties and high-pressure behavior of plutonium dioxide: Density functional theory calculations
    Zhang, Ping
    Wang, Bao-Tian
    Zhao, Xian-Geng
    PHYSICAL REVIEW B, 2010, 82 (14)
  • [7] High-throughput search for potential potassium ion conductors: A combination of geometrical-topological and density functional theory approaches
    Eremin, R. A.
    Kabanova, N. A.
    Morkhova, Ye. A.
    Golov, A. A.
    Blatov, V. A.
    SOLID STATE IONICS, 2018, 326 : 188 - 199
  • [8] Magnetic ground states and hyperfine interactions in YMnO 3 using density functional theory
    Scalise, L.
    Gerami, A. Mokhles
    da Silva, E. Lora
    Pereira, L. F. D.
    Carbonari, A. W.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 599
  • [9] High-Throughput Pressure-Dependent Density Functional Theory Investigation of Herringbone Polycyclic Aromatic Hydrocarbons: Part 1. Pressure-Dependent Structure Trends
    Hammouri, Mahmoud
    Garcia, Taylor M.
    Cook, Cameron
    Monaco, Stephen
    Jezowski, Sebastian
    Marom, Noa
    Schatschneider, Bohdan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (42) : 23815 - 23827
  • [10] High-pressure crystal structure prediction of calcium borohydride using density functional theory
    Aeberhard, Philippe C.
    Refson, Keith
    Edwards, Peter P.
    David, William I. F.
    PHYSICAL REVIEW B, 2011, 83 (17):