STABILITY OF MATTER-WAVE SOLITONS IN QUASI-1D BOSE-EINSTEIN CONDENSATES TRAPPED IN POSCHL-TELLER POTENTIAL SUBJECT TO PERIODIC PERTURBATIONS THROUGH A NUMERICAL APPROACH

被引:0
作者
Pereira, L. C. [1 ]
Ferreira, J. V. B. [2 ]
Nascimento, V. A. [1 ,3 ]
机构
[1] Univ Fed Mato Grosso do Sul, Inst Fis, Programa Posgrad Ciencia Mat, BR-79070900 Campo Grande, MS, Brazil
[2] Univ Fed Mato Grosso do Sul, Inst Fis, BR-79070900 Campo Grande, MS, Brazil
[3] Univ Fed Mato Grosso do Sul, Fac Med, Grp Spect & Bioinformat Appl Biodivers & Hlth, Sch Med,Postgrad Program Hlth & Dev Midwest Reg, BR-79070900 Campo Grande, MS, Brazil
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2020年 / 21卷 / 03期
关键词
Bose-Einstein condensates; solitons; Poschl-Teller potential; split-step Crank-Nicolson method; GROSS-PITAEVSKII EQUATION; DARK SOLITONS; BRIGHT; GAS; NONLINEARITY; VORTEX;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We presented for the first time a study regarding the stability of matter-wave solitons in a quasi one-dimensional Bose-Einstein condensate (cigar-shaped) consisting of atoms with attractive interatomic interactions trapped in a Poschl-Teller potential subjected to periodic perturbations. The quasi-one-dimensional Bose-Einstein condensate was modeled by Gross-Pitaevskii equation. A numerical (split-step Crank-Nicolson method) approach has been proposed to investigate the dynamic properties of matter-wave solitons during the temporal evolution of this atomic system. The results obtained in this paper demonstrated the stability of the wave-matter solitons while they were perturbed by periodic oscillations of the Poschl-Teller potential during temporal evolution. The results presented in this paper can open the way for several applications in atomic and molecular physics, condensed matter physics, solid state physics, nonlinear optics and material sciences.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 42 条
  • [1] Bright solitons in Bose-Einstein condensates with field-induced dipole moments
    Abdullaev, F. Kh
    Gammal, A.
    Malomed, B. A.
    Tomio, Lauro
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (07)
  • [2] Two-dimensional dipolar Bose-Einstein condensate bright and vortex solitons on a one-dimensional optical lattice
    Adhikari, S. K.
    Muruganandam, P.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (04)
  • [3] Gap solitons in a model of a superfluid fermion gas in optical lattices
    Adhikari, Sadhan K.
    Malomed, Boris A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (15) : 1402 - 1412
  • [4] Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation
    Adhikari, SK
    Muruganandam, P
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (12) : 2831 - 2843
  • [5] Matter solitons in Bose-Einstein condensates with optical lattices
    Alfimov, GL
    Konotop, VV
    Salerno, M
    [J]. EUROPHYSICS LETTERS, 2002, 58 (01): : 7 - 13
  • [6] Splitting of coupled bright solitons in two-component Bose-Einstein condensates under parametric perturbation
    Alotaibi, M. O. D.
    Baizakov, B. B.
    Al-Marzoug, S. M.
    Bahlouli, H.
    [J]. PHYSICS LETTERS A, 2020, 384 (11)
  • [7] OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR
    ANDERSON, MH
    ENSHER, JR
    MATTHEWS, MR
    WIEMAN, CE
    CORNELL, EA
    [J]. SCIENCE, 1995, 269 (5221) : 198 - 201
  • [8] Effects of nonlinearity on the optical diffraction of Bose-Einstein condensates: Direct integration of optically coupled multicomponent Gross-Pitaevskii equation
    Ando, Taro
    Ohtake, Yoshiyuki
    Kondo, Jun-ichi
    Nakamura, Katsuhiro
    [J]. PHYSICAL REVIEW A, 2011, 83 (02):
  • [9] Asma M, 2017, P ROMANIAN ACAD A, V18, P331
  • [10] Solitons in Bose-Einstein condensates
    Balakrishnan, Radha
    Satija, Indubala I.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (05): : 929 - 947