Optimal learning for sequential sampling with non-parametric beliefs

被引:5
作者
Barut, Emre [1 ]
Powell, Warren B. [1 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
关键词
Bayesian global optimization; Knowledge gradient; Non-parametric estimation; GLOBAL OPTIMIZATION; KNOWLEDGE-GRADIENT; APPROXIMATION; AGGREGATION; SELECTION;
D O I
10.1007/s10898-013-0050-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a sequential learning policy for ranking and selection problems, where we use a non-parametric procedure for estimating the value of a policy. Our estimation approach aggregates over a set of kernel functions in order to achieve a more consistent estimator. Each element in the kernel estimation set uses a different bandwidth to achieve better aggregation. The final estimate uses a weighting scheme with the inverse mean square errors of the kernel estimators as weights. This weighting scheme is shown to be optimal under independent kernel estimators. For choosing the measurement, we employ the knowledge gradient policy that relies on predictive distributions to calculate the optimal sampling point. Our method allows a setting where the beliefs are expected to be correlated but the correlation structure is unknown beforehand. Moreover, the proposed policy is shown to be asymptotically optimal.
引用
收藏
页码:517 / 543
页数:27
相关论文
共 50 条
[31]   NON-PARAMETRIC ESTIMATION OF BARLOW'S MODEL [J].
Stoica, George .
ADVANCES AND APPLICATIONS IN STATISTICS, 2006, 6 (02) :235-240
[32]   On Non-parametric Methodology of the Plasma Turbulence Research [J].
Gorshenin, Andrey K. ;
Korolev, Victor Yu. ;
Skvortsova, Nina N. ;
Malakhov, Dmitry V. .
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 :2377-2380
[33]   Non-Parametric Tomographic SAR Reconstruction via Improved Regularized MUSIC [J].
Hadj-Rabah, Karima ;
Schirinzi, Gilda ;
Budillon, Alessandra ;
Hocine, Faiza ;
Belhadj-Aissa, Aichouche .
REMOTE SENSING, 2023, 15 (06)
[34]   A non-parametric approach to non-linear causality testing [J].
Bell, D ;
Kay, J ;
Malley, J .
ECONOMICS LETTERS, 1996, 51 (01) :7-18
[35]   Determination of stable safflower genotypes in variable environments by parametric and non-parametric methods [J].
Afzal, Obaid ;
Fayyaz-ul Hassan ;
Ahmed, Mukhtar ;
Shabbir, Ghulam ;
Ahmed, Shakeel .
JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2021, 6
[36]   Non-parametric estimation for NHPP software reliability models [J].
Wang, Zhiguo ;
Wang, Jinde ;
Liang, Xue .
JOURNAL OF APPLIED STATISTICS, 2007, 34 (01) :107-119
[37]   Non-parametric regression for spatially dependent data with wavelets [J].
Krebs, Johannes T. N. .
STATISTICS, 2018, 52 (06) :1270-1308
[38]   ` Reference curves based on non-parametric quantile regression [J].
Gannoun, A ;
Girard, S ;
Guinot, C ;
Saracco, J .
STATISTICS IN MEDICINE, 2002, 21 (20) :3119-3135
[39]   A screening approach for non-parametric global sensitivity analysis [J].
Wang, Xiaodi ;
Yang, Ming ;
Zhang, Yingshan ;
Kiang, Melody .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (04) :656-675
[40]   Non-parametric Copula Estimation Under Bivariate Censoring [J].
Gribkova, Svetlana ;
Lopez, Olivier .
SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (04) :925-946