CO2 solubility in trisodium phosphate (TSP) and its mixed solutions is a crucial information for CO2 absorption and utilization. However, with limited experimental data and large variations of experimental conditions, intrinsic trends of CO2 solubility under a specific set of conditions are difficult to be determined without comprehensive experiments. To address this, here, a machine learning based data- mining is proven a powerful method to explore the intrinsic trends of CO2 solubility trained from 299 data groups extracted from previous experimental literatures. A generalized machine learning input representation method was applied, for the first time, by quantifying the types and concentrations of the blended solutions. With a general regression neural network (GRNN) as the algorithm, we found that the intrinsic trends of CO2 solubility could be well- fitted with a limited amount of experimental data, having the average root mean square error (RMSE) lower than 0.038 mol CO2/mol solution. More importantly, it is shown that with a generalized input representation, machine learning can mine the relationships between CO2 solubility and various experimental conditions, which could help to better understand the intrinsic trends of CO2 solubility in blended solutions.
机构:
Iran Univ Sci & Technol, Sch Chem Petr & Gas Engn, POB 16765-163, Tehran, IranIran Univ Sci & Technol, Sch Chem Petr & Gas Engn, POB 16765-163, Tehran, Iran
机构:
Univ Genoa, Dept Civil Chem & Environm Engn, Via Opera Pia 15, I-16145 Genoa, ItalyUniv Genoa, Dept Civil Chem & Environm Engn, Via Opera Pia 15, I-16145 Genoa, Italy
Ramezani, Rouzbeh
Mazinani, Saeed
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Dept Chem Engn, Celestijnenlaan 200F, B-3001 Leuven, BelgiumUniv Genoa, Dept Civil Chem & Environm Engn, Via Opera Pia 15, I-16145 Genoa, Italy
Mazinani, Saeed
Di Felice, Renzo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Genoa, Dept Civil Chem & Environm Engn, Via Opera Pia 15, I-16145 Genoa, ItalyUniv Genoa, Dept Civil Chem & Environm Engn, Via Opera Pia 15, I-16145 Genoa, Italy
Di Felice, Renzo
Darvishmanesh, Siavash
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USAUniv Genoa, Dept Civil Chem & Environm Engn, Via Opera Pia 15, I-16145 Genoa, Italy
Darvishmanesh, Siavash
Van der Bruggen, Bart
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Dept Chem Engn, Celestijnenlaan 200F, B-3001 Leuven, BelgiumUniv Genoa, Dept Civil Chem & Environm Engn, Via Opera Pia 15, I-16145 Genoa, Italy
机构:
Persian Gulf Univ, Fac Petr Gas & Petrochem Engn, Dept Chem Engn, POB 75169-13798, Bushehr, IranPersian Gulf Univ, Fac Petr Gas & Petrochem Engn, Dept Chem Engn, POB 75169-13798, Bushehr, Iran
Afkhamipour, Morteza
Mofarahi, Masoud
论文数: 0引用数: 0
h-index: 0
机构:
Persian Gulf Univ, Fac Petr Gas & Petrochem Engn, Dept Chem Engn, POB 75169-13798, Bushehr, Iran
Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 120749, South KoreaPersian Gulf Univ, Fac Petr Gas & Petrochem Engn, Dept Chem Engn, POB 75169-13798, Bushehr, Iran
Mofarahi, Masoud
Pakzad, Peyman
论文数: 0引用数: 0
h-index: 0
机构:
Persian Gulf Univ, Fac Petr Gas & Petrochem Engn, Dept Chem Engn, POB 75169-13798, Bushehr, IranPersian Gulf Univ, Fac Petr Gas & Petrochem Engn, Dept Chem Engn, POB 75169-13798, Bushehr, Iran
Pakzad, Peyman
Lee, Chang-Ha
论文数: 0引用数: 0
h-index: 0
机构:
Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 120749, South KoreaPersian Gulf Univ, Fac Petr Gas & Petrochem Engn, Dept Chem Engn, POB 75169-13798, Bushehr, Iran