A variational problem on Stiefel manifolds

被引:18
作者
Bloch, Anthony M. [1 ]
Crouch, Peter E.
Sanyal, Amit K.
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85281 USA
[3] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85281 USA
关键词
D O I
10.1088/0951-7715/19/10/002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In their paper on discrete analogues of some classical systems such as the rigid body and the geodesic flow on an ellipsoid, Moser and Veselov introduced their analysis in the general context of flows on Stiefel manifolds. We consider here a general class of continuous time, quadratic cost, optimal control problems on Stiefel manifolds, which in the extreme dimensions again yield these classical physical geodesic flows. We have already shown that this optimal control setting gives a new symmetric representation of the rigid body flow and in this paper we extend this representation to the geodesic flow on the ellipsoid and the more general Stiefel manifold case. The metric we choose on the Stiefel manifolds is the same as that used in the symmetric representation of the rigid body flow and that used by Moser and Veselov. In the extreme cases of the ellipsoid and the rigid body, the geodesic flows are known to be integrable. We obtain the extremal flows using both variational and optimal control approaches and elucidate the structure of the flows on general Stiefel manifolds.
引用
收藏
页码:2247 / 2276
页数:30
相关论文
共 14 条
[1]  
BLOCH A, 2003, NONHOLONMIC MECH CON, V24
[2]   The symmetric representation of the rigid body equations and their discretization [J].
Bloch, AM ;
Crouch, PE ;
Marsden, JE ;
Ratiu, TS .
NONLINEARITY, 2002, 15 (04) :1309-1341
[3]   Complete involutive algebras of functions on cotangent bundles of homogeneous spaces [J].
Bolsinov, AV ;
Jovanovic, B .
MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (1-2) :213-236
[4]   Computing Lyapunov exponents on a Stiefel manifold [J].
Bridges, TJ ;
Reich, S .
PHYSICA D, 2001, 156 (3-4) :219-238
[5]   A procrustes problem on the Stiefel manifold [J].
Eldén, L ;
Park, H .
NUMERISCHE MATHEMATIK, 1999, 82 (04) :599-619
[6]  
GELFAND IM, 2000, CALCULAS VARIATIONS
[7]  
Kirk D. E., 2004, OPTIMAL CONTROL THEO, DOI DOI 10.1109/TAC.1972.1100008
[8]   GEODESICS ON QUADRICS AND A MECHANICAL PROBLEM OF NEUMANN,C. [J].
KNORRER, H .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1982, 334 :69-78
[9]   GEODESICS ON THE ELLIPSOID [J].
KNORRER, H .
INVENTIONES MATHEMATICAE, 1980, 59 (02) :119-143
[10]  
MARSDEN JE, 1999, INTRO MECH SYMMETRY, P345