Application of h-adaptive, high order finite element method to solve radial Schrodinger equation

被引:5
作者
Romanowski, Zbigniew [1 ]
机构
[1] Interdisciplinary Ctr Mat Modelling, PL-02106 Warsaw, Poland
关键词
high order finite element method; h-adaptive method; Lobatto basis functions; radial Schrodinger equation; HARTREE-FOCK CALCULATIONS; NUMERICAL-SOLUTION;
D O I
10.1080/00268970902873554
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The h-adaptive, high order finite element method is applied to solve a second order one dimension eigenvalue problem. The finite element formulation for the Lobatto basis is given, for which basis functions of arbitrary order can be constructed. The adaptive algorithm is simple, yet very efficient and straightforward to implement. The algorithm is based on the observation that the expansion coefficients of Lobatto basis functions decay rapidly. It allows evaluating the smallest eigenvalues simultaneously with the comparable accuracy for all eigenvalues. The presented algorithm is applied to solve the radial Schrodinger equation with the Coulomb and the Woods-Saxon potentials. For both potentials the convergence rate is presented. After seven adaptive iterations nine-digit accuracy was obtained.
引用
收藏
页码:1339 / 1348
页数:10
相关论文
共 39 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]  
Anderson E., 1999, LAPACK USERS GUIDE, DOI DOI 10.1137/1.9780898719604
[3]  
[Anonymous], 1984, COMPUTATIONAL GALERK, DOI DOI 10.1007/978-3-642-85949-6
[4]  
Brage T, 1997, COMPUTATIONAL ATOMIC
[5]  
Brenner S.C., 1996, The Mathematical Theory of Finite Element Methods
[6]  
Ciarlet Philippe G., 2002, Finite Element Method for Elliptic Problems
[7]  
Cooley J. W., 1961, MATH COMPUT, V15, P363, DOI DOI 10.2307/2003025
[8]   ORBITALS EXPANDED IN SLATER FUNCTIONS WITH SINGLE-EXPONENT BY SHELL AND BY SUBSHELL [J].
DELAVEGA, JMG ;
MIGUEL, B .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1994, 51 (06) :397-405
[9]   ENERGY-OPTIMIZED GTO BASIS-SETS FOR LCAO CALCULATIONS - A GRADIENT APPROACH [J].
FAEGRI, K ;
ALMLOF, J .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1986, 7 (04) :396-405
[10]   SPLINE METHODS FOR MULTICONFIGURATION HARTREE-FOCK CALCULATIONS [J].
FISCHER, CF ;
GUO, W ;
SHEN, Z .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1992, 42 (04) :849-867