Hybridization of graphene nanosheets and carbon-coated hollow Fe3O4 nanoparticles as a high-performance anode material for lithium-ion batteries

被引:133
作者
Zuo, Yongtao [1 ]
Wang, Gang [1 ]
Peng, Jun [1 ]
Li, Gang [1 ]
Ma, Yanqing [1 ]
Yu, Feng [1 ]
Dai, Bin [1 ]
Guo, Xuhong [1 ,2 ]
Wong, Ching-Ping [3 ,4 ]
机构
[1] Shihezi Univ, Sch Chem & Chem Engn, Key Lab Mat Oriented Chem Engn Xinjiang Uygur Aut, Shihezi, Peoples R China
[2] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[3] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
ENHANCED RATE PERFORMANCE; ONE-POT SYNTHESIS; CYCLIC STABILITY; REDUCED GRAPHENE; FE3O4-GRAPHENE NANOCOMPOSITES; SUPERIOR ANODE; STORAGE; COMPOSITE; NANOSTRUCTURES; HYBRID;
D O I
10.1039/c5ta09742h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe3O4 has long been regarded as a promising anode material for lithium ion batteries due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. At present, no effective method has been realized to overcome the bottleneck of poor cyclability and low rate capability because of its huge volume change and low electrical conductivity. In this article, a facile synthesis strategy is developed to fabricate two-dimensional (2D) carbon encapsulated hollow Fe3O4 nanoparticles (H-Fe3O4 NPs) homogeneously anchored on graphene nanosheets (designated as H-Fe3O4@C/GNSs) as a durable high-rate lithium ion battery anode material. In the constructed architecture, the thin carbon shells can avoid the direct exposure of encapsulated H-Fe3O4 NPs to the electrolyte and preserve the structural and interfacial stabilization of H-Fe3O4 NPs. Meanwhile, the flexible and conductive GNSs and carbon shells can accommodate the mechanical stress induced by the volume change of H-Fe3O4 NPs as well as inhibit the aggregation of Fe3O4 NPs and thus maintain the structural and electrical integrity of the H-Fe3O4@C/GNSs electrode during the lithiation/delithiation processes. As a result, the H-Fe3O4@C/GNSs electrode exhibits outstanding reversible capacity (870.4 mA h g(-1) at a rate of 0.1C (1C = 1 A g(-1)) after 100 cycles) and excellent rate performance (745, 445, and 285 mA h g(-1) at 1, 5, and 10C, respectively) for lithium storage. More importantly, the H-Fe3O4@C/GNSs electrode demonstrates prolonged cycling stability even at high charge/discharge rates (only 6.8% capacity loss after 200 cycles at a high rate of 10C). Our results show that the 2D H-Fe3O4@C/GNSs are promising anode materials for next generation LIBs with high energy and power density.
引用
收藏
页码:2453 / 2460
页数:8
相关论文
共 55 条
[1]   Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocomposites for Li ion battery anodes [J].
Behera, Shantanu K. .
CHEMICAL COMMUNICATIONS, 2011, 47 (37) :10371-10373
[2]   Synthesis of 3D nitrogen-doped graphene/Fe3O4 by a metal ion induced self-assembly process for high-performance Li-ion batteries [J].
Chang, Yanhong ;
Li, Jing ;
Wang, Bin ;
Luo, Hui ;
He, Haiyong ;
Song, Qi ;
Zhi, Linjie .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (46) :14658-14665
[3]   Graphene-Encapsulated Hollow Fe3O4 Nanoparticle Aggregates As a High-Performance Anode Material for Lithium Ion Batteries [J].
Chen, Dongyun ;
Ji, Ge ;
Ma, Yue ;
Lee, Jim Yang ;
Lu, Jianmei .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (08) :3078-3083
[4]   Template-grown graphene/porous Fe2O3 nanocomposite: A high-performance anode material for pseudocapacitors [J].
Chen, Jizhang ;
Xu, Junling ;
Zhou, Shuang ;
Zhao, Ni ;
Wong, Ching-Ping .
NANO ENERGY, 2015, 15 :719-728
[5]   One-Pot Synthesis of Uniform Fe3O4 Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities [J].
Chen, Jun Song ;
Zhang, Yumiao ;
Lou, Xiong Wen .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (09) :3276-3279
[6]   SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries [J].
Chen, Jun Song ;
Cheah, Yan Ling ;
Chen, Yuan Ting ;
Jayaprakash, N. ;
Madhavi, Srinivasan ;
Yang, Yan Hui ;
Lou, Xiong Wen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20504-20508
[7]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+
[8]   One-step synthesis of hollow porous Fe3O4 beads-reduced graphene oxide composites with superior battery performance [J].
Chen, Yu ;
Song, Bohang ;
Tang, Xiaosheng ;
Lu, Li ;
Xue, Junmin .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17656-17662
[9]   Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries [J].
Chen, Yu ;
Xia, Hui ;
Lu, Li ;
Xue, Junmin .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (11) :5006-5012
[10]   High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries [J].
Cui, Zhi-Min ;
Hang, Ling-Yan ;
Song, Wei-Guo ;
Guo, Yu-Guo .
CHEMISTRY OF MATERIALS, 2009, 21 (06) :1162-1166