FIRST NONLINEAR SYZYGIES OF IDEALS ASSOCIATED TO GRAPHS

被引:8
作者
Fernandez-Ramos, Oscar [1 ]
Gimenez, Philippe [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dept Algebra Geometria & Topol, E-47005 Valladolid, Spain
关键词
Edge ideals; Graded Betti numbers; Linear resolutions; Syzygies; RESOLUTIONS;
D O I
10.1080/00927870802226205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider an ideal I subset of K[x(1),..., x(n)], with K an arbitrary field, generated by monomials of degree two. Assuming that I does not have a linear resolution, we determine the step s of the minimal graded free resolution of I where nonlinear syzygies first appear, we show that at this step of the resolution nonlinear syzygies are concentrated in degree s + 3, and we compute the corresponding graded Betti number beta(s,s+3). The multidegrees of these nonlinear syzygies are also determined and the corresponding multigraded Betti numbers are shown to be all equal to 1.
引用
收藏
页码:1921 / 1933
页数:13
相关论文
共 13 条
[1]  
Bayer D., 1992, Macaulay: a system for computation in algebraic geometry and commutative algebra
[2]   Polar syzygies in characteristic zero: The monomial case [J].
Bermejo, Isabel ;
Gimenez, Philippe ;
Simis, Aron .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (01) :1-21
[3]   Restricting linear syzygies: algebra and geometry [J].
Eisenbud, D ;
Green, M ;
Hulek, K ;
Popescu, S .
COMPOSITIO MATHEMATICA, 2005, 141 (06) :1460-1478
[4]  
Eisenbud D., 2005, GRAD TEXT M, V229
[5]  
Eliahou S., 1998, APORTACIONES MAT COM, V25, P115
[6]  
Frberg R., 1990, Topics in Algebra. Banach Center Publications, V26, P57, DOI [10.4064/-26-2-57-70, DOI 10.4064/-26-2-57-70]
[7]   Resolutions of α-stable ideals [J].
Gasharov, V ;
Hibi, T ;
Peeva, I .
JOURNAL OF ALGEBRA, 2002, 254 (02) :375-394
[8]   Buchsbaum complexes with linear resolutions [J].
Hibi, T .
JOURNAL OF ALGEBRA, 1996, 179 (01) :127-136
[9]  
Hochster M., 1975, Lecture Notes in Pure and Applied Mathematics, V26, P171
[10]   Characteristic-independence of Betti numbers of graph ideals [J].
Katzman, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) :435-454