Projective synchronization of fractional-order chaotic systems based on sliding mode control

被引:12
作者
Liu Ding [1 ]
Yan Xiao-Mei [1 ]
机构
[1] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
fractional-order chaotic system; sliding mode control; projective synchronization;
D O I
10.7498/aps.58.3747
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the projective synchronization of fractional-order chaotic systems, a controller based on active sliding mode theory is presented. Based on the stability theory of fractional-order linear system, stability of the proposed method is analysed. Two cases of projective synchronization I i.e. identical fractional-order Liu-Liu systems and different fractional-order Chen-Liu systems, are implemented separately. The simulation results show the effectiveness of the proposed controller.
引用
收藏
页码:3747 / 3752
页数:6
相关论文
共 18 条
[1]   Hyperchaos in fractional order nonlinear systems [J].
Ahmad, WM .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1459-1465
[2]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[3]   Secure digital communication using controlled projective synchronisation of chaos [J].
Chee, CY ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1063-1070
[4]   Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system [J].
Chen Xiang-Rong ;
Liu Chong-Xin ;
Li Yong-Xun .
ACTA PHYSICA SINICA, 2008, 57 (03) :1453-1457
[5]  
Gao X, 2005, CHINESE PHYS, V14, P908, DOI 10.1088/1009-1963/14/5/009
[6]   Chaos in a fractional order modified Duffing system [J].
Ge, Zheng-Ming ;
Ou, Chan-Yi .
CHAOS SOLITONS & FRACTALS, 2007, 34 (02) :262-291
[7]   Chaotic dynamics of the fractional Lorenz system [J].
Grigorenko, I ;
Grigorenko, E .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)
[8]   Chaos in the fractional order Chen system and its control [J].
Li, CG ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :549-554
[9]   Chaos in Chen's system with a fractional order [J].
Li, CP ;
Peng, GJ .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :443-450
[10]   Analysis of Chua's dual chaotic circuit [J].
Liu, CX .
ACTA PHYSICA SINICA, 2002, 51 (06) :1198-1202