The biharmonicity of sections of the tangent bundle

被引:5
作者
Markellos, M. [1 ]
Urakawa, H. [1 ]
机构
[1] Tohoku Univ, Inst Int Educ, Sendai, Miyagi 9808576, Japan
来源
MONATSHEFTE FUR MATHEMATIK | 2015年 / 178卷 / 03期
基金
日本学术振兴会;
关键词
Tangent bundle; Sasaki metric; Biharmonic maps; Critical points; HARMONIC MAPPINGS; SUBMANIFOLDS; ENERGY; MAPS;
D O I
10.1007/s00605-014-0702-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bienergy of a vector field on a Riemannian manifold is defined to be the bienergy of the corresponding map , where the tangent bundle is equipped with the Sasaki metric . The constrained variational problem is studied, where variations are confined to vector fields, and the corresponding critical point condition characterizes biharmonic vector fields. Furthermore, we prove that if is a compact oriented -dimensional Riemannian manifold and a tangent vector of , then is a biharmonic vector field of if and only if is parallel. Finally, we give examples of non-parallel biharmonic vector fields in the case which the base manifold is non-compact.
引用
收藏
页码:389 / 404
页数:16
相关论文
共 18 条
[1]  
Aronszajn N., 1983, POLYHARMONIC FUNCTIO
[2]   Liouville-type theorems for biharmonic maps between Riemannian manifolds [J].
Baird, Paul ;
Fardoun, Ali ;
Ouakkas, Seddik .
ADVANCES IN CALCULUS OF VARIATIONS, 2010, 3 (01) :49-68
[3]  
Baird Paul, 2003, London Mathematical Society Monographs. New Series, V29
[4]   Biharmonic submanifolds of S3 [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (08) :867-876
[5]   Biharmonic submanifolds in spheres [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 130 (1) :109-123
[6]   On the biharmonic vector fields [J].
Djaa, Mustapha ;
Elhendi, Hichem ;
Ouakkas, Seddik .
TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (03) :463-474
[7]  
Dragomir S, 2011, HARMONIC VECTOR FIEL
[8]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[10]  
Gudmundsson S., 2002, Expo. Math., V20, P1, DOI [DOI 10.1016/S0723-0869(02)80027-5, 10.1016/S0723-0869(02)80027-5]