Hard exudate segmentation in retinal image with attention mechanism

被引:9
作者
Si, Ze [1 ]
Fu, Dongmei [1 ,2 ]
Liu, Yang [1 ]
Huang, Zhicheng [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, 30 Xueyuan Rd, Beijing, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Engn Res Ctr Ind Spectrum Imaging, Beijing, Peoples R China
关键词
DIABETIC-RETINOPATHY; FUNDUS IMAGES; PHOTOGRAPHS;
D O I
10.1049/ipr2.12007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetic retinopathy (DR) is the main reason that causes preventable blindness. Hard exudate is one of the earliest signs of diabetic retinopathy. Precise detection of hard exudate is helpful for the early diagnosis of diabetic retinopathy. Fully convolutional network (FCN) shows great performance on hard exudate segmentation task. However, there are limitations for fully convolutional network to build long-range dependencies in different regions of the image. Convolution operator extract features in local area, segmentation results based on local features are likely to be wrong in some cases. Another channel attention method was proposed, and two different attention modules are used in the segmentation model. In this way, long-range dependencies across different image regions are built efficiently in different stages of feature extraction. In addition, a new loss function is designed to deal with the data imbalance problem in hard exudate segmentation task. The proposed method was evaluated by two public datasets, and the comparative experiments show the effectiveness of the proposed method.
引用
收藏
页码:587 / 597
页数:11
相关论文
共 34 条
[1]  
Ardiyanto I, 2016, INT CONF INFORM COMM, P119, DOI 10.1109/ICTS.2016.7910284
[2]  
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
[3]  
Chen L. -C., 2014, ICLR, DOI DOI 10.48550/ARXIV.1412.7062
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[6]  
Chudzik P, 2018, IEEE ENG MED BIO, P770, DOI 10.1109/EMBC.2018.8512354
[7]   Exudate Segmentation using Fully Convolutional Neural Networks and Inception Modules [J].
Chudzik, Piotr ;
Majumdar, Somshubra ;
Caliva, Francesco ;
Al-Diri, Bashir ;
Hunter, Andrew .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[8]   Tsallis entropy and sparse reconstructive dictionary learning for exudate detection in diabetic retinopathy [J].
Das, Vineeta ;
Puhan, Niladri B. .
Journal of Medical Imaging, 2017, 4 (02)
[9]   TeleOphta: Machine learning and image processing methods for teleophthalmology [J].
Decenciere, E. ;
Cazuguel, G. ;
Zhang, X. ;
Thibault, G. ;
Klein, J. -C. ;
Meyer, F. ;
Marcotegui, B. ;
Quellec, G. ;
Lamard, M. ;
Danno, R. ;
Elie, D. ;
Massin, P. ;
Viktor, Z. ;
Erginay, A. ;
Lay, B. ;
Chabouis, A. .
IRBM, 2013, 34 (02) :196-203
[10]   Exudate-based diabetic macular edema detection in fundus images using publicly available datasets [J].
Giancardo, Luca ;
Meriaudeau, Fabrice ;
Karnowski, Thomas P. ;
Li, Yaqin ;
Garg, Seema ;
Tobin, Kenneth W., Jr. ;
Chaum, Edward .
MEDICAL IMAGE ANALYSIS, 2012, 16 (01) :216-226