The existence of clouds affects the interpretation and utilization of remote sensing images. A thin cloud removal algorithm for cloud-contaminated remote sensing images is proposed by combining a multidirectional dual tree complex wavelet transform (M-DTCWT) with domain adaptation transfer least square support vector regression (T-LSSVR). First, M-DTCWT is constructed by using the hourglass filter bank in combination with DTCWT, which is used to decompose remote sensing images into multiscale and multidirectional subbands. Then the low-frequency subband coefficients of the cloud-free regions on target images and source domain images are used as samples for a T-LSSVR model, which can be used to predict those of the cloud regions on cloud-contaminated images. Finally, by enhancing the high-frequency coefficients and replacing the low-frequency coefficients, the thin clouds on cloud-contaminated images are removed. Experimental results show that M-DTCWT contributes to keeping the details of the ground objects of cloud-contaminated images, and the T-LSSVR model can effectively learn the contour information from multisource and multitemporal images, therefore, the proposed method achieves a good effect of thin cloud removal. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)