On the Complexity of Reconfiguration Problems

被引:0
作者
Ito, Takehiro [1 ]
Demaine, Erik D. [2 ]
Harvey, Nicholas J. A. [3 ]
Papadimitriou, Christos H. [4 ]
Sideri, Martha [5 ]
Uehara, Ryuhei [6 ]
Uno, Yushi [7 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Aoba Yama 6-6-05, Sendai, Miyagi 9808579, Japan
[2] MIT Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON 2L3G1, Canada
[4] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[5] Athens Univ Econ & Business, Dept Comp Sci, Athens 10434, Greece
[6] JAIST, Sch Informat Sci, Nomi 9231292, Japan
[7] Osaka Prefecture Univ, Grad Sch Sci, Sakai, Osaka 5998531, Japan
来源
ALGORITHMS AND COMPUTATION, PROCEEDINGS | 2008年 / 5369卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Reconfiguration problems arise when we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible. We demonstrate that a host of reconfiguration problems derived from NP-complete problems A A are PSPACE-complete, while some are also NP-hard to approximate. In contrast, several reconfiguration versions of problems in P are solvable in polynomial time.
引用
收藏
页码:28 / +
页数:2
相关论文
共 15 条
[1]  
Bonsma P, 2007, LECT NOTES COMPUT SC, V4708, P738
[2]  
Cook W.J., 1997, Combinatorial optimization
[3]  
Edmonds J., 1971, Math. Program, V1, P127, DOI [DOI 10.1007/BF01584082, 10.1007/BF01584082]
[4]   A threshold of in n for approximating set cover [J].
Feige, U .
JOURNAL OF THE ACM, 1998, 45 (04) :634-652
[5]  
Garey MR, 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[6]  
Gopalan P, 2006, LECT NOTES COMPUT SC, V4051, P346, DOI 10.1007/11786986_31
[7]   Some optimal inapproximability results [J].
Håstad, J .
JOURNAL OF THE ACM, 2001, 48 (04) :798-859
[8]   Clique is hard to approximate within n1-ε [J].
Håstad, J .
ACTA MATHEMATICA, 1999, 182 (01) :105-142
[9]   PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation [J].
Hearn, RA ;
Demaine, ED .
THEORETICAL COMPUTER SCIENCE, 2005, 343 (1-2) :72-96
[10]   Partitioning trees of supply and demand [J].
Ito, T ;
Zhou, X ;
Nishizeki, T .
INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2005, 16 (04) :803-827