Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors

被引:817
作者
Kang, Jiahao [1 ]
Liu, Wei [1 ]
Sarkar, Deblina [1 ]
Jena, Debdeep [2 ]
Banerjee, Kaustav [1 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
来源
PHYSICAL REVIEW X | 2014年 / 4卷 / 03期
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; DER-WAALS INTERACTIONS; MOS2; GRAPHENE; WSE2; TRANSISTORS; RESISTANCE;
D O I
10.1103/PhysRevX.4.031005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Among various 2D materials, monolayer transition-metal dichalcogenide (mTMD) semiconductors with intrinsic band gaps (1-2 eV) are considered promising candidates for channel materials in next-generation transistors. Low-resistance metal contacts to mTMDs are crucial because currently they limit mTMD device performances. Hence, a comprehensive understanding of the atomistic nature of metal contacts to these 2D crystals is a fundamental challenge, which is not adequately addressed at present. In this paper, we report a systematic study of metal-mTMD contacts with different geometries (top contacts and edge contacts) by ab initio density-functional theory calculations, integrated with Mulliken population analysis and a semiempirical van der Waals dispersion potential model (which is critical for 2D materials and not well treated before). Particularly, In, Ti, Au, and Pd, contacts to monolayer MoS2 and WSe2 as well as Mo-MoS2 and W-WSe2 contacts are evaluated and categorized, based on their tunnel barriers, Schottky barriers, and orbital overlaps. Moreover, going beyond Schottky theory, new physics in such contact interfaces is revealed, such as the metallization of mTMDs and abnormal Fermi level pinning. Among the top contacts to MoS2, Ti and Mo show great potential to form favorable top contacts, which are both n-type contacts, while for top contacts to WSe2, W or Pd exhibits the most advantages as an n- or p-type contact, respectively. Moreover, we find that edge contacts can be highly advantageous compared to top contacts in terms of electron injection efficiency. Our formalism and the results provide guidelines that would be invaluable for designing novel 2D semiconductor devices.
引用
收藏
页数:14
相关论文
共 43 条
[1]   van der Waals interactions in density-functional theory [J].
Andersson, Y ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :102-105
[2]  
[Anonymous], AT TOOLKIT V 13 8 0
[3]   A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS [J].
BECKE, AD ;
EDGECOMBE, KE .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5397-5403
[4]  
Bhattacharya P., 1997, Semiconductor Optoelectronic Devices
[5]   Are we van der Waals ready? [J].
Bjorkman, T. ;
Gulans, A. ;
Krasheninnikov, A. V. ;
Nieminen, R. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (42)
[6]   van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations [J].
Bjorkman, T. ;
Gulans, A. ;
Krasheninnikov, A. V. ;
Nieminen, R. M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[7]  
Cao W, 2013, PROC EUR S-STATE DEV, P37, DOI 10.1109/ESSDERC.2013.6818814
[8]   High Performance Multilayer MoS2 Transistors with Scandium Contacts [J].
Das, Saptarshi ;
Chen, Hong-Yan ;
Penumatcha, Ashish Verma ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (01) :100-105
[9]  
Fang H, 2012, NANO LETT, V12, P3788, DOI [10.1021/nl301702r, 10.1021/nl3040674]
[10]   First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) all-2D semiconductor/metal contacts [J].
Gan, Li-Yong ;
Zhao, Yu-Jun ;
Huang, Dan ;
Schwingenschloegl, Udo .
PHYSICAL REVIEW B, 2013, 87 (24)