Sonoelectrochemical synthesis of highly photoelectrochemically active TiO2 nanotubes by incorporating CdS nanoparticles

被引:73
作者
Wang, ChengLin [1 ]
Sun, Lan [1 ]
Yun, Hong [1 ]
Li, Jing [1 ]
Lai, YueKun [1 ]
Lin, ChangJian [1 ,2 ]
机构
[1] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
[2] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
关键词
NANOWIRE ARRAYS; SULFIDE FILMS; THIN-FILMS; FABRICATION; ULTRASOUND; DEPOSITION; SELENIDE; ENERGY; SHAPE;
D O I
10.1088/0957-4484/20/29/295601
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-organized anodic TiO2 nanotube arrays (TiO2NTs) are functionalized with CdS nanoparticle based perfusion and deposition through a single-step sonoelectrodeposition method. Even controlled at 50 degrees C, CdS nanoparticles with smaller size and more homogeneous distribution are successfully synthesized in dimethyl sulfoxide (DMSO) under ultrasonic irradiation. Moreover, TiO2 nanotubes can be filled with nanoparticles because of the ultrasonic effect. The CdS incorporated TiO2NTs (CdS-TiO2NTs) effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. Compared with pure TiO2NTs, a more than ninefold enhancement in photocurrent response is observed using the CdS-TiO2NTs. Maximum incident photon to charge carrier efficiency (IPCE) values of 99.95% and 9.85% are observed respectively for CdS-TiO2 nanotubes and pure TiO2NTs. The high value of IPCE observed with the CdS-TiO2NTs is attributed to the increased efficiency of charge separation and transport of electrons. A schematic diagram is proposed to illustrate the possible process of CdS formation in nanotubes under sonochemical and electrochemical conditions.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS [J].
Banerjee, Subarna ;
Mohapatra, Susanta K. ;
Das, Prajna P. ;
Misra, Mano .
CHEMISTRY OF MATERIALS, 2008, 20 (21) :6784-6791
[2]   Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes:: Preparation, characterization, and application to photoelectrochemical cells [J].
Chen, SG ;
Paulose, M ;
Ruan, C ;
Mor, GK ;
Varghese, OK ;
Kouzoudis, D ;
Grimes, CA .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2006, 177 (2-3) :177-184
[3]   Gas phase photochemical synthesis of II/VI metal sulfide films and in situ luminescence spectroscopic identification of photofragments [J].
Cheon, J ;
Zink, JI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (16) :3838-3839
[4]  
Cornpton R. G., 1997, ELECTROANAL, V9, P509
[5]   Magnetic nanopowders: Ultrasound-assisted electrochemical preparation and properties [J].
Delplancke, JL ;
Dille, J ;
Reisse, J ;
Long, GJ ;
Mohan, A ;
Grandjean, F .
CHEMISTRY OF MATERIALS, 2000, 12 (04) :946-955
[6]   Sonoelectrochemistry: The effects of ultrasound on organic electrochemical reduction [J].
Durant, A ;
Francois, H ;
Reisse, J ;
KirschDeMesmaeker, A .
ELECTROCHIMICA ACTA, 1996, 41 (02) :277-284
[7]   SPUTTER-DEPOSITED CDS FILMS WITH HIGH PHOTOCONDUCTIVITY THROUGH FILM THICKNESS [J].
FRASER, DB ;
MELCHIOR, H .
JOURNAL OF APPLIED PHYSICS, 1972, 43 (07) :3120-&
[8]   PHOTOELECTROCHEMICAL PROPERTIES OF CADMIUM CHALCOGENIDE THIN-FILMS PREPARED BY VACUUM EVAPORATION [J].
FUJII, M ;
KAWAI, T ;
KAWAI, S .
SOLAR ENERGY MATERIALS, 1988, 18 (1-2) :23-35
[9]   MO(GS)MBE and photo-MO(GS)MBE of II-VI semiconductors [J].
Fujita, S ;
Kawakami, Y ;
Fujita, S .
JOURNAL OF CRYSTAL GROWTH, 1996, 164 (1-4) :196-201
[10]   Method for comparing the efficiency of ultrasound irradiation independent of the shape and the volume of the reaction vessel in sonochemical experiments [J].
Gaplovsky, A. ;
Gaplovsky, M. ;
Kimura, T. ;
Toma, S. ;
Donovalova, J. ;
Vencel, T. .
ULTRASONICS SONOCHEMISTRY, 2007, 14 (06) :695-698