Sufficient Utilization of Zirconium Ions to Improve the Structure and Surface properties of Nickel-Rich Cathode Materials for Lithium-Ion Batteries

被引:164
作者
He, Tao [1 ]
Lu, Yun [1 ]
Su, Yuefeng [1 ,2 ]
Bao, Liying [1 ]
Tan, Jing [3 ]
Chen, Lai [1 ]
Zhang, Qiyu [1 ]
Li, Weikang [1 ]
Chen, Shi [1 ,2 ]
Wu, Feng [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Chem & Chem Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
batteries; doping; lithium; nickel; zirconium; POSITIVE ELECTRODE MATERIALS; HIGH-PERFORMANCE CATHODE; OXIDE CATHODE; ELECTROCHEMICAL PERFORMANCES; THERMAL-PROPERTIES; CYCLING STABILITY; NI; LI; LINI0.6CO0.2MN0.2O2; CATION;
D O I
10.1002/cssc.201702451
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We doped Zr4+ ions in the outer layer of Ni0.8Co0.1Mn0.1(OH)(2) by coprecipitation. The distribution of Zr4+ in the final cathode materials showed a gradient distribution because of ion migration during the thermal treatment. The doped layer was confirmed by using various analysis methods (energy-dispersive X-ray spectroscopy, XRD, X-ray photoelectron spectroscopy, and TEM), which implies that Zr4+ can not only occupy both the transition metal slabs and Li slabs but also form a Li2ZrO3 layer on the surface as a highly ion-conductive layer. The doped Zr4+ in the transition metal slabs can stabilize the crystal structure because of the strong Zr-O bond energy, and the doped Zr4+ in the Li slabs can act as pillar ions to improve the structural stability and reduce cation mixing. The gradient doping can take advantage of the "pillar effect" and restrain the "blocking effect" of the pillar ions, which reduces irreversible capacity loss and improves the cycling and rate performance of the Ni-rich cathode materials. The capacity retention of the modified sample reached 83.2% after 200 cycles at 1C (200 mAg(-1)) at 2.8-4.5 V, and the discharge capacity was up to 164.7 mAhg(-1) at 10C. This effective strategy can improve the structure stability of the cathode material while reducing the amount of non-electrochemical active dopant because of the gradient distribution of the dopant. In addition, the highly ion-conductive layer of Li2ZrO3 on the surface can improve the rate performance of the cathode.
引用
收藏
页码:1639 / 1648
页数:10
相关论文
共 50 条
[21]   Effects of Mg-substitution in Li(Ni,Co,Al)O2 positive electrode materials on the crystal structure and battery performance [J].
Kondo, H. ;
Takeuchi, Y. ;
Sasaki, T. ;
Kawauchi, S. ;
Itou, Y. ;
Hiruta, O. ;
Okuda, C. ;
Yonemura, M. ;
Kamiyama, T. ;
Ukyo, Y. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1131-1136
[22]   Changes in the cation ordering of layered O3LixNi0.5Mn0.5O2 during electrochemical cycling to high voltages:: An electron diffraction study [J].
Li, Hayley H. ;
Yabuuchi, Naoaki ;
Meng, Ying S. ;
Kumar, Sundeep ;
Breger, Julien ;
Grey, Clare P. ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2007, 19 (10) :2551-2565
[23]   A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: A case of Ni0.8Co0.1Mn0.1 and LiNi0.8Co0.1Mn0.1O2 [J].
Li, Tao ;
Li, Xinhai ;
Wang, Zhixing ;
Guo, Huajun .
JOURNAL OF POWER SOURCES, 2017, 342 :495-503
[24]   Enhanced Electrochemical Performance of Zr-Modified Layered LiNi1/3Co1/3Mn1/3O2 Cathode Material for Lithium-Ion Batteries [J].
Li, Xing ;
Peng, Hui ;
Wang, Ming-Shan ;
Zhao, Xing ;
Huang, Peng-Xiao ;
Yang, Wei ;
Xu, Jun ;
Wang, Zhi-Qiang ;
Qu, Mei-Zhen ;
Yu, Zuo-Long .
CHEMELECTROCHEM, 2016, 3 (01) :130-137
[25]   Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries [J].
Liao, Jin-Yun ;
Manthiram, Arumugam .
JOURNAL OF POWER SOURCES, 2015, 282 :429-436
[26]   Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries [J].
Lin, Feng ;
Markus, Isaac M. ;
Nordlund, Dennis ;
Weng, Tsu-Chien ;
Asta, Mark D. ;
Xin, Huolin L. ;
Doeff, Marca M. .
NATURE COMMUNICATIONS, 2014, 5 :3529
[27]   Phase evolution for conversion reaction electrodes in lithium-ion batteries [J].
Lin, Feng ;
Nordlund, Dennis ;
Weng, Tsu-Chien ;
Zhu, Ye ;
Ban, Chunmei ;
Richards, Ryan M. ;
Xin, Huolin L. .
NATURE COMMUNICATIONS, 2014, 5
[28]  
Liu W., 2015, ANGEW CHEM, V127, P4518
[29]   Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries [J].
Liu, Wen ;
Oh, Pilgun ;
Liu, Xien ;
Lee, Min-Joon ;
Cho, Woongrae ;
Chae, Sujong ;
Kim, Youngsik ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (15) :4440-4457
[30]   Nanoscale Coating of LiMO2 (M = Ni, Co, Mn) Nanobelts with Li+-Conductive Li2TiO3: Toward Better Rate Capabilities for Li-Ion Batteries [J].
Lu, Jun ;
Peng, Qing ;
Wang, Weiyang ;
Nan, Caiyun ;
Li, Lihong ;
Li, Yadong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (05) :1649-1652