Isomorphisms between positive and negative β-transformations

被引:7
作者
Kalle, Charlene [1 ]
机构
[1] Leiden Univ, Inst Math, NL-2300 RA Leiden, Netherlands
关键词
PIECEWISE MONOTONIC TRANSFORMATIONS; INVARIANT-MEASURES; INTERVAL; ENTROPY;
D O I
10.1017/etds.2012.127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare a piecewise linear map with constant slope beta > 1 and a piecewise linear map with constant slope -beta. These maps are called the positive and negative beta-transformations. We show that for a certain set of beta s, the multinacci numbers, there exists a measurable isomorphism between these two maps. We further show that for all other values of beta between 1 and 2 the two maps cannot be isomorphic.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 21 条
[1]  
Aihara K., 2008, CORR
[2]   The classification of one-sided Markov chains [J].
Ashley, J ;
Marcus, B ;
Tuncel, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :269-295
[3]   ABSOLUTELY CONTINUOUS INVARIANT-MEASURES THAT ARE MAXIMAL [J].
BYERS, W ;
BOYARSKY, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 290 (01) :303-314
[4]  
Cowen R., 2000, QUAEST MATH, V23, P507
[5]  
Dajani K., 2011, INTEGERS B, V11B, P1
[6]   Number representation using generalized (-β)-transformation [J].
Dombek, D. ;
Masakova, Z. ;
Pelantova, E. .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (48) :6653-6665
[7]  
Frougny C, 2009, LECT NOTES COMPUT SC, V5583, P252
[8]   Invariant densities for piecewise linear maps of the unit interval [J].
Gora, Pawel .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :1549-1583
[10]   ERGODIC PROPERTIES OF INVARIANT-MEASURES FOR PIECEWISE MONOTONIC TRANSFORMATIONS [J].
HOFBAUER, F ;
KELLER, G .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (01) :119-140