ESA-ECMWF Report on recent progress and research directions in machine learning for Earth System observation and prediction

被引:16
作者
Schneider, Rochelle [1 ,2 ]
Bonavita, Massimo [2 ]
Geer, Alan [2 ]
Arcucci, Rossella [3 ]
Dueben, Peter [2 ]
Vitolo, Claudia [1 ]
Le Saux, Bertrand [1 ]
Demir, Beguem [4 ]
Mathieu, Pierre-Philippe [1 ]
机构
[1] European Space Agcy, I-00044 Frascati, Italy
[2] European Ctr Medium Range Weather Forecast, Reading RG2 9AX, Berks, England
[3] Imperial Coll London, London SW7 2AZ, England
[4] Tech Univ Berlin, D-10587 Berlin, Germany
关键词
D O I
10.1038/s41612-022-00269-z
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper provides a short summary of the outcomes of the workshop on Machine Learning (ML) for Earth System Observation and Prediction (ESOP/ML4ESOP) organised by the European Space Agency (ESA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) between 15 and 18 November 2021. The 4-days workshop had more than 30 speakers and 30 poster-presenters, attracting over 1100 registrations from 85 countries around the world. The workshop aimed to demonstrate where and how the fusion between traditional ESOP applications and ML methods has shown limitations, outstanding opportunities, and challenges based on the participant's feedback. Future directions were also highlighted from all thematic areas that comprise the ML4ESOP domain.
引用
收藏
页数:5
相关论文
共 27 条
  • [1] [Anonymous], COPERNICUS SERVICES
  • [2] Deep Data Assimilation: Integrating Deep Learning with Data Assimilation
    Arcucci, Rossella
    Zhu, Jiangcheng
    Hu, Shuang
    Guo, Yi-Ke
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 21
  • [3] Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems
    Beucler, Tom
    Pritchard, Michael
    Rasp, Stephan
    Ott, Jordan
    Baldi, Pierre
    Gentine, Pierre
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (09)
  • [4] Machine Learning for Earth System Observation and Prediction
    Bonavita, Massimo
    Arcucci, Rossella
    Carrassi, Alberto
    Dueben, Peter
    Geer, Alan J.
    Le Saux, Bertrand
    Longepe, Nicolas
    Mathieu, Pierre-Philippe
    Raynaud, Laure
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2021, 102 (04) : E710 - E716
  • [5] Combining data assimilation and machine learning to infer unresolved scale parametrization
    Brajard, Julien
    Carrassi, Alberto
    Bocquet, Marc
    Bertino, Laurent
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [6] Data Learning: Integrating Data Assimilation and Machine Learning
    Buizza, Caterina
    Casas, Cesar Quilodran
    Nadler, Philip
    Mack, Julian
    Marrone, Stefano
    Titus, Zainab
    Le Cornec, Clemence
    Heylen, Evelyn
    Dur, Tolga
    Ruiz, Luis Baca
    Heaney, Claire
    Lopez, Julio Amador Diaz
    Kumar, K. S. Sesh
    Arcucci, Rossella
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 58
  • [7] Semi-supervised semantic segmentation in Earth Observation: the MiniFrance suite, dataset analysis and multi-task network study
    Castillo-Navarro, Javiera
    Le Saux, Bertrand
    Boulch, Alexandre
    Audebert, Nicolas
    Lefevre, Sebastien
    [J]. MACHINE LEARNING, 2022, 111 (09) : 3125 - 3160
  • [8] Weakly supervised change detection using guided anisotropic diffusion
    Daudt, Rodrigo Caye
    Le Saux, Bertrand
    Boulch, Alexandre
    Gousseau, Yann
    [J]. MACHINE LEARNING, 2023, 112 (06) : 2211 - 2237
  • [9] Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data
    dos Santos, Rochelle Schneider
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 88
  • [10] Using machine learning to correct model error in data assimilation and forecast applications
    Farchi, Alban
    Laloyaux, Patrick
    Bonavita, Massimo
    Bocquet, Marc
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (739) : 3067 - 3084