Boundary layer theory for convection-diffusion equations in a circle

被引:7
|
作者
Jung, C. -Y. [1 ]
Temam, R. [2 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Nat Sci, Ulsan, South Korea
[2] Indiana Univ, Inst Sci Comp & Appl Math, Bloomington, IN 47405 USA
基金
新加坡国家研究基金会;
关键词
boundary layers; singular perturbations; characteristic points; convection-dominated problems; parabolic boundary layers; NAVIER-STOKES EQUATIONS; ASYMPTOTIC ANALYSIS;
D O I
10.1070/RM2014v069n03ABEH004898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to boundary layer theory for singularly perturbed convection-diffusion equations in the unit circle. Two characteristic points appear, (+/- 1, 0), in the context of the equations considered here, and singularities may occur at these points depending on the behaviour there of a given function f, namely, the flatness or compatibility of f at these points as explained below. Two previous articles addressed two particular cases: [24] dealt with the case where the function f is sufficiently flat at the characteristic points, the so-called compatible case; [25] dealt with a generic non-compatible case (f polynomial). This survey article recalls the essential results from those papers, and continues with the general case (f non-flat and non-polynomial) for which new specific boundary layer functions of parabolic type are introduced in addition.
引用
收藏
页码:435 / 480
页数:46
相关论文
共 50 条
  • [1] SINGULAR PERTURBATIONS AND BOUNDARY LAYER THEORY FOR CONVECTION-DIFFUSION EQUATIONS IN A CIRCLE: THE GENERIC NONCOMPATIBLE CASE
    Jung, Chang-Yeol
    Temam, Roger
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) : 4274 - 4296
  • [2] Convection-diffusion equations in a circle: The compatible case
    Jung, Chang-Yeol
    Temam, Roger
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (01): : 88 - 107
  • [3] On the numerical approximations of stiff convection-diffusion equations in a circle
    Hong, Youngjoon
    Jung, Chang-Yeol
    Temam, Roger
    NUMERISCHE MATHEMATIK, 2014, 127 (02) : 291 - 313
  • [4] Numerical approximation of convection-diffusion equations in a channel using boundary layer elements
    Jung, CY
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (06) : 756 - 777
  • [5] Cell boundary element methods for convection-diffusion equations
    Jeon, Y
    Park, EJ
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (02) : 309 - 319
  • [6] Singular perturbation analysis of time dependent convection-diffusion equations in a circle
    Hong, Youngjoon
    Jung, Chang-Yeol
    Temam, Roger
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 119 : 127 - 148
  • [7] On the uniqueness of linear convection-diffusion equations with integral boundary conditions
    Lee, Chiun-Chang
    Mizuno, Masashi
    Moon, Sang-Hyuck
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 191 - 206
  • [8] A high order moving boundary treatment for convection-diffusion equations
    Liu, Shihao
    Jiang, Yan
    Shu, Chi -Wang
    Zhang, Mengping
    Zhang, Shuhai
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [9] Analysis of a singular limit of boundary conditions for convection-diffusion equations
    Chacon Rebollo, Tomas
    Gomez Marmol, Macarena
    Sanchez Munoz, Isabel
    ASYMPTOTIC ANALYSIS, 2010, 70 (3-4) : 141 - 154
  • [10] CONSERVATION SCHEMES FOR CONVECTION-DIFFUSION EQUATIONS WITH ROBIN BOUNDARY CONDITIONS
    Flotron, Stephane
    Rappaz, Jacques
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06): : 1765 - 1781