Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene

被引:107
作者
Ulstrup, Soren [1 ]
Johannsen, Jens Christian [2 ]
Cilento, Federico [3 ]
Miwa, Jill A. [1 ]
Crepaldi, Alberto [3 ]
Zacchigna, Michele [4 ]
Cacho, Cephise [5 ]
Chapman, Richard [5 ]
Springate, Emma [5 ]
Mammadov, Samir [6 ]
Fromm, Felix [6 ]
Raidel, Christian [6 ]
Seyller, Thomas [6 ]
Parmigiani, Fulvio [3 ,7 ]
Grioni, Marco
King, Phil D. C. [8 ]
Hofmann, Philip [1 ]
机构
[1] Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[2] Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland
[3] Sincrotrone Trieste, I-34149 Trieste, Italy
[4] IOM CNR Lab TASC, I-34012 Trieste, Italy
[5] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England
[6] Tech Univ Chemnitz, Inst Phys, D-09126 Chemnitz, Germany
[7] Univ Trieste, Dept Phys, I-34127 Trieste, Italy
[8] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Carrier lifetime - Conduction bands - Graphene - Electronic structure;
D O I
10.1103/PhysRevLett.112.257401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tunable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here, we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second substate of the conduction band, in which the excited electrons decay through fast, phonon-assisted interband transitions.
引用
收藏
页数:5
相关论文
共 21 条
[11]   Asymmetry gap in the electronic band structure of bilayer graphene [J].
McCann, Edward .
PHYSICAL REVIEW B, 2006, 74 (16)
[12]   Controlling the electronic structure of bilayer graphene [J].
Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, United States ;
不详 ;
不详 .
Science, 2006, 5789 (951-954) :951-954
[13]   Gate-induced insulating state in bilayer graphene devices [J].
Oostinga, Jeroen B. ;
Heersche, Hubert B. ;
Liu, Xinglan ;
Morpurgo, Alberto F. ;
Vandersypen, Lieven M. K. .
NATURE MATERIALS, 2008, 7 (02) :151-157
[14]   Electron-hole generation and recombination rates for Coulomb scattering in graphene [J].
Rana, Farhan .
PHYSICAL REVIEW B, 2007, 76 (15)
[15]   Quasi-freestanding Graphene on SiC(0001) [J].
Speck, F. ;
Ostler, M. ;
Roehrl, J. ;
Jobst, J. ;
Waldmann, D. ;
Hundhausen, M. ;
Ley, L. ;
Weber, H. B. ;
Seyller, Th. .
SILICON CARBIDE AND RELATED MATERIALS 2009, PTS 1 AND 2, 2010, 645-648 :629-+
[16]   Extracting the temperature of hot carriers in time- and angle-resolved photoemission [J].
Ulstrup, Soren ;
Johannsen, Jens Christian ;
Grioni, Marco ;
Hofmann, Philip .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (01)
[17]   Broken-Symmetry States in Doubly Gated Suspended Bilayer Graphene [J].
Weitz, R. T. ;
Allen, M. T. ;
Feldman, B. E. ;
Martin, J. ;
Yacoby, A. .
SCIENCE, 2010, 330 (6005) :812-816
[18]   Enhanced Optical Conductivity of Bilayer Graphene Nanoribbons in the Terahertz Regime [J].
Wright, A. R. ;
Cao, J. C. ;
Zhang, C. .
PHYSICAL REVIEW LETTERS, 2009, 103 (20)
[19]  
Xia FN, 2009, NAT NANOTECHNOL, V4, P839, DOI [10.1038/NNANO.2009.292, 10.1038/nnano.2009.292]
[20]  
Yan J, 2012, NAT NANOTECHNOL, V7, P472, DOI [10.1038/NNANO.2012.88, 10.1038/nnano.2012.88]