Positive solutions of a logistic equation on unbounded intervals

被引:6
作者
Ma, L [1 ]
Xu, XW
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
关键词
direct method; blow-up; positive solution;
D O I
10.1090/S0002-9939-02-06405-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive solutions of a one-parameter family of logistic equations on R+ or on R. These equations are stationary versions of the Fisher equations and the KPP equations. We also study the blow-up region of a sequence of the solutions when the parameter approaches a critical value and the non-existence of positive solutions beyond the critical value. We use the direct method and the sub and super solution method.
引用
收藏
页码:2947 / 2958
页数:12
相关论文
共 21 条
[11]   LINEAR AND SEMILINEAR EIGENVALUE PROBLEMS IN R(N) [J].
EDELSON, AL ;
RUMBOS, AJ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (1-2) :215-240
[13]  
Kazdan JL., 1975, J. Differential Geometry, V10, P113, DOI 10.4310/jdg/1214432678
[14]   On the elliptic equation Δu+ku-Kup=0 on complete Riemannian manifolds and their geometric applications [J].
Li, P ;
Tam, LF ;
Yang, DG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (03) :1045-1078
[15]  
Lin F. H., 1985, Proc. Am. Math. Soc., V95, P219
[16]   First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs [J].
Lopez-Gomez, J ;
de Lis, JCS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :47-64
[17]  
Ma L, 1993, MATH ANN, V295, P75, DOI [10.1007/BF01444877, DOI 10.1007/BF01444877]
[18]   Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations [J].
Marcus, M ;
Veron, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :237-274
[19]  
NI WM, 1982, INDIANA U MATH J, V31, P495