Positive solutions of a logistic equation on unbounded intervals

被引:6
作者
Ma, L [1 ]
Xu, XW
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
关键词
direct method; blow-up; positive solution;
D O I
10.1090/S0002-9939-02-06405-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive solutions of a one-parameter family of logistic equations on R+ or on R. These equations are stationary versions of the Fisher equations and the KPP equations. We also study the blow-up region of a sequence of the solutions when the parameter approaches a critical value and the non-existence of positive solutions beyond the critical value. We use the direct method and the sub and super solution method.
引用
收藏
页码:2947 / 2958
页数:12
相关论文
共 21 条
[1]   On a diffusive logistic equation [J].
Afrouzi, GA ;
Brown, KJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (01) :326-339
[3]  
AVILES P, 1988, J DIFFER GEOM, V27, P225
[4]   PRINCIPAL EIGENVALUES FOR PROBLEMS WITH INDEFINITE WEIGHT FUNCTION ON RN [J].
BROWN, KJ ;
COSNER, C ;
FLECKINGER, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (01) :147-155
[5]  
BUTTAZZO GM, 1998, 1 DIMENSIONAL VARIAT
[6]   On the global bifurcation diagram for the one-dimensional Ginzburg-Landau model of superconductivity [J].
Dancer, EN ;
Hastings, SP .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 :271-291
[7]   POSITIVE SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION ON A COMPACT MANIFOLD [J].
DELPINO, MA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (11) :1423-1430
[8]  
DU Y, 2000, POSITIVE SOLUTIONS E
[9]   Logistic type equations on RN by a squeezing method involving boundary blow-up solutions [J].
Du, YH ;
Ma, L .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :107-124
[10]   Blow-up solutions for a class of semilinear elliptic and parabolic equations [J].
Du, YH ;
Huang, QG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :1-18