Solutions for a Class of the Higher Diophantine Equation

被引:0
作者
Ran Yin-xia [1 ]
机构
[1] Longnan Teachers Coll, Dept Math, Longnan 742500, Peoples R China
来源
PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND ELECTRONICS INFORMATION (ICACSEI 2013) | 2013年 / 41卷
关键词
Higher Diophantine equation; integer solutions; integer ring; algebraic number theroy;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We studied the Diophantine equation 294nxy... By using the elementary method and algebaic number theroy, we obtain the following concusions: (i) Let x be an odd number, one necessary condition which the equation has integer solutions is that (28n)-1/3 contains some square factors. (ii) Let x be an even number, when n= 9k(k >= 1), all integer solutions for the equation are 0,4 = kxy when 940nkk, all integer solutions are(9421,2,2 kkxy when 1,2,3,5,6,7,8 (mod 9). the equation has no integer solution.
引用
收藏
页码:7 / 9
页数:3
相关论文
共 7 条
  • [1] Gao Li, 2008, J SW U NATL, V34
  • [2] Lebsgue V A, 1850, NOUV AMN MATH
  • [3] Li Na, 2011, SCI TECHNOLOGY ENG, V11
  • [4] Nagell T, 1921, NORSK MAREM FORENING
  • [5] Pan Chengdong, 2003, ALGEBRAIC NUMBER THE
  • [6] Ran Yinxia, 2012, J YANAN U NATURAL SC, V31
  • [7] Ran Yinxia, 2012, J SW U NATL, V38