Approximation and comparison for nonsmooth anisotropic motion by mean curvature in RN

被引:33
作者
Bellettini, G
Novaga, M
机构
[1] Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56126 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56100 Pisa, Italy
关键词
D O I
10.1142/S0218202500000021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a reaction-diffusion inclusion provides a sub-optimal approximation for anisotropic motion by mean curvature in the nonsmooth case. This result is valid in any space dimension and with a time-dependent driving force, provided we assume the existence of a regular flow. The crystalline case is included. As a by-product of our analysis, a comparison theorem between regular flows is obtained. This result implies uniqueness of the original flow.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 25 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]  
ALMGREN F, 1995, J DIFFER GEOM, V42, P1
[3]  
[Anonymous], 1993, P S PURE MATH
[4]   Minimal barriers for geometric evolutions [J].
Bellettini, G ;
Novaga, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (01) :76-103
[5]   Some results on surface measures in calculus of variations. [J].
Bellettini, G ;
Paolini, M ;
Venturini, S .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 170 :329-357
[6]  
Bellettini G., 1995, Differential Integral Equations, V8, P735
[7]  
BELLETTINI G, 1998, IN PRESS MATH MODELS
[8]  
Bellettini G., 1996, J. Hokkaido Math., V25, P537
[9]   GENERATION AND PROPAGATION OF INTERFACES FOR REACTION DIFFUSION-EQUATIONS [J].
CHEN, XF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :116-141
[10]  
DEGIORGI E, 1990, METHODS REAL ANAL PA, P120