Thermal conductivity of twisted bilayer graphene

被引:153
作者
Li, Hongyang [1 ,2 ]
Ying, Hao [1 ,2 ]
Chen, Xiangping [1 ,2 ]
Nika, Denis L. [3 ,4 ,5 ]
Cocemasov, Alexandr I. [5 ]
Cai, Weiwei [1 ,2 ]
Balandin, Alexander A. [3 ,4 ]
Chen, Shanshan [1 ,2 ]
机构
[1] Xiamen Univ, Dept Phys, Lab Nanoscale Condense Matter Phys, Xiamen 361005, Peoples R China
[2] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[3] Univ Calif Riverside, Dept Elect Engn, Nanodevice Lab, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA
[5] Moldova State Univ, Dept Phys & Engn, E Pokatilov Lab Phys & Engn Nanomat, MD-2009 Kishinev, Moldova
基金
美国国家科学基金会;
关键词
SINGLE-LAYER GRAPHENE; MANAGEMENT; TRANSPORT; FILMS;
D O I
10.1039/c4nr04455j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (similar to 300-700 K). This finding indicates that the heat carriers phonons - in twisted bilayer graphene do not behave in the same manner as that observed in individual graphene layers. The decrease in the thermal conductivity found in twisted bilayer graphene was explained by the modification of the Brillouin zone due to plane rotation and the emergence of numerous folded phonon branches that enhance the phonon Umklapp and normal scattering. The results obtained are important for understanding thermal transport in two-dimensional systems.
引用
收藏
页码:13402 / 13408
页数:7
相关论文
共 43 条
[1]   Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering [J].
Aksamija, Z. ;
Knezevic, I. .
APPLIED PHYSICS LETTERS, 2011, 98 (14)
[2]   Thermal conductivity of graphene and graphite [J].
Alofi, A. ;
Srivastava, G. P. .
PHYSICAL REVIEW B, 2013, 87 (11)
[3]   Phonon conductivity in graphene [J].
Alofi, A. ;
Srivastava, G. P. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (01)
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[6]   Fabrication of large-area twisted bilayer graphene for high-speed ultra-sensitive tunable photodetectors [J].
Bao, Jiming ;
Xing, Sirui ;
Wang, Yanan ;
Wu, Wei ;
Robles-Hernandez, Francisco ;
Pei, Shin-shem .
MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS V, 2013, 8725
[7]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[8]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[9]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[10]   Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping [J].
Chen, Shanshan ;
Li, Qiongyu ;
Zhang, Qimin ;
Qu, Yan ;
Ji, Hengxing ;
Ruoff, Rodney S. ;
Cai, Weiwei .
NANOTECHNOLOGY, 2012, 23 (36)