FRACTIONAL DIFFUSION LIMIT OF A LINEAR KINETIC EQUATION IN A BOUNDED DOMAIN

被引:9
作者
Aceves-Sanchez, Pedro [1 ]
Schmeiser, Christian [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Kinetic transport equations; linear Boltzmann operator; anomalous diffusion limit; fractional diffusion; asymptotic analysis; TRANSPORT; MOTION;
D O I
10.3934/krm.2017021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A version of fractional diffusion on bounded domains, subject to 'homogeneous Dirichlet boundary conditions' is derived from a kinetic transport model with homogeneous inflow boundary conditions. For nonconvex domains, the result differs from standard formulations. It can be interpreted as the forward Kolmogorow equation of a stochastic process with jumps along straight lines, remaining inside the domain.
引用
收藏
页码:541 / 551
页数:11
相关论文
共 25 条
  • [1] Aceves-Sanchez P., ARXIV160700855
  • [2] Aceves-Sanchez P., ARXIV160601023
  • [3] FRACTIONAL-DIFFUSION ADVECTION LIMIT OF A KINETIC MODEL
    Aceves-Sanchez, Pedro
    Schmeiser, Christian
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (04) : 2806 - 2818
  • [4] [Anonymous], 1961, NUCL REACTOR THEORY
  • [5] ANOMALOUS DIFFUSION LIMIT FOR KINETIC EQUATIONS WITH DEGENERATE COLLISION FREQUENCY
    Ben Abdallah, Naoufel
    Mellet, Antoine
    Puel, Marjolaine
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) : 2249 - 2262
  • [6] Fractional dispersion, Levy motion, and the MADE tracer tests
    Benson, DA
    Schumer, R
    Meerschaert, MM
    Wheatcraft, SW
    [J]. TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) : 211 - 240
  • [7] Estimates of heat kernel of fractional Laplacian perturbed by gradient operators
    Bogdan, Krzysztof
    Jakubowski, Tomasz
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) : 179 - 198
  • [8] Anomalous transport of particles in plasma physics
    Cesbron, L.
    Mellet, A.
    Trivisa, K.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2344 - 2348
  • [9] Cesbron L., IN PRESS
  • [10] Estimates on Green functions and Poisson kernels for symmetric stable processes
    Chen, ZQ
    Song, RM
    [J]. MATHEMATISCHE ANNALEN, 1998, 312 (03) : 465 - 501