The Classification of the Annihilating-Ideal Graphs of Commutative Rings

被引:36
作者
Aalipour, G. [1 ,2 ]
Akbar, S. [1 ,2 ]
Behboodi, M. [2 ,3 ]
Nikandish, R. [2 ,4 ]
Nikmehr, M. J. [4 ]
Shaveisi, F. [2 ,5 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] IPM, Inst Res Fundamental Sci, Sch Math, Tehran, Iran
[3] Isfahan Univ Technol, Dept Math Sci, Esfahan, Iran
[4] KN Tossi Univ Technol, Fac Sci, Dept Math, Tehran, Iran
[5] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran
关键词
annihilating-ideal graph; clique number; chromatic number; Artinian ring; Noetherian ring; ZERO-DIVISOR GRAPHS;
D O I
10.1142/S1005386714000200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring and A(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R)* = A(R)backslash{(0)} and two distinct vertices I and J are a djacent if and only if IJ = (0). Here were present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and omega(AG(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings who seannihilating-ideal graphs arecomplete or bipartite.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 16 条
[1]   On zero-divisor graphs of finite rings [J].
Akbari, S. ;
Mohammadian, A. .
JOURNAL OF ALGEBRA, 2007, 314 (01) :168-184
[2]   The total graph and regular graph of a commutative ring [J].
Akbari, S. ;
Kiani, D. ;
Mohammadi, F. ;
Moradi, S. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (12) :2224-2228
[3]  
[Anonymous], 2001, Introduction to Graph Theory
[4]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[5]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[6]   THE ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS I [J].
Behboodi, M. ;
Rakeei, Z. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (04) :727-739
[7]  
Bruns W., 1997, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, VRevised
[8]   The zero-divisor graph of a commutative semigroup [J].
DeMeyer, FR ;
McKenzie, T ;
Schneider, K .
SEMIGROUP FORUM, 2002, 65 (02) :206-214
[9]  
Goldman J., 1969, RECENT PROGR COMBINA, P75
[10]  
Halmos P.R., 1995, LINEAR ALGEBRA PROBL