Automated detection of myocardial infarction from ECG signal using variational mode decomposition based analysis

被引:8
作者
Kapfo, Ato [1 ]
Dandapat, Samarendra [1 ]
Bora, Prabin Kumar [1 ]
机构
[1] Indian Inst Technol, Dept Elect & Elect Engn, Gauhati 781039, Assam, India
关键词
NEURAL-NETWORK; CLASSIFICATION; LOCALIZATION;
D O I
10.1049/htl.2020.0015
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this Letter, the authors propose a variational mode decomposition method for quantifying diagnostic information of myocardial infarction (MI) from the electrocardiogram (ECG) signal. The multiscale mode energy and principal component (PC) of multiscale covariance matrices are used as features. The mode energies determine the strength of the mode, and the PCs provide the representation of the ECG signal with less redundancy. K-nearest neighbour and support vector machine classifier are utilised to assess the performance of the extracted features for the detection and classification of MI and normal (healthy control). The proposed method achieved a specificity of 99.88%, sensitivity of 99.90%, and accuracy of 99.88%. Experimental results demonstrate that the proposed method with the multiscale mode energy and PC features achieved better output compared to the previously published work.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 36 条
[1]   Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 415 :190-198
[2]   Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Adam, Muhammad ;
Lih, Oh Shu ;
Sudarshan, Vidya K. ;
Hong, Tan Jen ;
Koh, Joel E. W. ;
Hagiwara, Yuki ;
Chua, Chua K. ;
Poo, Chua Kok ;
San, Tan Ru .
INFORMATION SCIENCES, 2017, 377 :17-29
[3]   Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Sudarshan, Vidya K. ;
Oh, Shu Lih ;
Adam, Muhammad ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Ghista, Dhanjoo N. ;
Martis, Roshan Joy ;
Chua, Chua K. ;
Poo, Chua Kok ;
Tan, Ru San .
KNOWLEDGE-BASED SYSTEMS, 2016, 99 :146-156
[4]   Variational Mode Decomposition and Decision Tree Based Detection and Classification of Power Quality Disturbances in Grid-Connected Distributed Generation System [J].
Achlerkar, Pankaj D. ;
Samantaray, S. R. ;
Manikandan, M. Sabarimalai .
IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (04) :3122-3132
[5]  
[Anonymous], 2002, IEEE PRESS SERIES BI
[6]  
[Anonymous], 2012, Goldberger's Clinical Electrocardiograph: A Simplified Approach
[7]   A review of automated methods for detection of myocardial ischemia and infarction using electrocardiogram and electronic health records [J].
Ansari, Sardar ;
Farzaneh, Negar ;
Duda, Marlena ;
Horan, Kelsey ;
Andersson, Hedvig B. ;
Goldberger, Zachary D. ;
Nallamothu, Brahmajee K. ;
Najarian, Kayvan .
IEEE Reviews in Biomedical Engineering, 2017, 10 :264-298
[8]   Detection and Localization of Myocardial Infarction using K-nearest Neighbor Classifier [J].
Arif, Muhammad ;
Malagore, Ijaz A. ;
Afsar, Fayyaz A. .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (01) :279-289
[9]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[10]  
Cristianini N., 2000, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods