NONHOMOGENEOUS BOUNDARY VALUE PROBLEMS OF NONLINEAR SCHRODINGER EQUATIONS IN A HALF PLANE

被引:18
作者
Ran, Yu [1 ]
Sun, Shu-Ming [2 ]
Zhang, Bing-Yu [3 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
[3] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
NLS equations; half plane; boundary value problems; DE-VRIES EQUATION; GLOBAL-SOLUTIONS; CAUCHY-PROBLEM;
D O I
10.1137/17M1119743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the initial- boundary- value problems (IBVPs) of nonlinear Schrodinger equations posed in a half plane R x R+ with nonhomogeneous Dirichlet boundary conditions. For any given s >= 0, if the initial data phi(x,y) are in Sobolev space H-s(R x R+) with the boundary data h (x, t) in an optimal space Hs (0,T) as de fi ned in the introduction, the local wellposedness of the IBVP in C([0,T]; H-s (R x R+)) is proved under necessary compatibility conditions on phi and h. The global well- posedness is also discussed for s = 1. The main idea of the proof for the local well- posedness is to derive a boundary integral operator for the corresponding nonhomogeneous boundary condition and obtain the Strichartz estimates for this operator. The space H-s (0,T) for h (x,t) is consistent with the temporal trace result that can be derived for the solutions of pure initial- value problems on R-2
引用
收藏
页码:2773 / 2806
页数:34
相关论文
共 42 条
[1]  
[Anonymous], 2003, SOBOLEV SPACES
[2]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[3]   ON THE BOUNDARY VALUE PROBLEM FOR THE SCHRODINGER EQUATION COMPATIBILITY CONDITIONS AND GLOBAL EXISTENCE [J].
Audiard, Corentin .
ANALYSIS & PDE, 2015, 8 (05) :1113-1143
[4]   ON THE NON-HOMOGENEOUS BOUNDARY VALUE PROBLEM FOR SCHRODINGER EQUATIONS [J].
Audiard, Corentin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) :3861-3884
[5]   Non-Homogeneous Boundary Value Problems for Linear Dispersive Equations [J].
Audiard, Corentin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (01) :1-37
[6]  
Bona JL, 2004, ADV DIFFERENTIAL EQU, V9, P241
[7]   Nonhomogeneous boundary-value problems for one-dimensional nonlinear Schrodinger equations [J].
Bona, Jerry L. ;
Sun, Shu-Ming ;
Zhang, Bing-Yu .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 109 :1-66
[8]   A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) :427-490
[9]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[10]  
Bourgain J., 1999, Amer. Math. Soc. Colloq. Publ., V46