Improving the corrosion resistance of MgZn1.2GdxZr0.18 (x=0, 0.8, 1.4, 2.0) alloys via Gd additions

被引:114
作者
Yin, Siqi [1 ,2 ]
Duan, Wenchao [1 ,2 ]
Liu, Wenhong [3 ]
Wu, Liang [4 ]
Bao, Jiaxin [1 ,2 ]
Yu, Jiamin [5 ]
Li, Liang [6 ]
Zhao, Zhong [7 ]
Cui, Jianzhong [1 ,2 ]
Zhang, Zhiqiang [1 ,2 ]
机构
[1] Northeastern Univ, Key Lab Electromagnet Proc Mat, Minist Educ, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Coll Mat Sci & Engn, Shenyang 110819, Peoples R China
[3] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[4] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[5] Univ Manchester, Sch Mat, Sackville St, Manchester M13 9PL, Lancs, England
[6] Univ Hertfordshire, Sch Engn & Comp Sci, Dept Engn, Hatfield AL10 9AB, Herts, England
[7] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnesium; Rare earth elements; Polarization; XPS; Intergranular corrosion; Passive films;
D O I
10.1016/j.corsci.2020.108962
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Effects of Gd addition on microstructure, corrosion behavior and mechanism of cast and extruded MgZn1.2GdxZr0.18 alloys are investigated through microstructure observation, weight loss and electrochemical tests. Increasing Gd from 0 to 2.0 at.%, grains are refined, MgZn2 phase, W-phase and X-phase are formed successively, and basal texture intensity is decreased. The significantly decreased grain size by extrusion and Gd addition induces formation of protective Gd2O3 and MgO layer. The extruded MgZn1.2Gd2.0Zr0.18 alloy shows decreased corrosion rate of 3.72 +/- 0.36 mm/year, owing to fine and homogeneous microstructure, dual-role (micro-anode and barrier) of X-phase, compact oxidation layer and basal crystallographic texture.
引用
收藏
页数:18
相关论文
共 92 条
[1]   Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy [J].
Ambat, R ;
Aung, NN ;
Zhou, W .
CORROSION SCIENCE, 2000, 42 (08) :1433-1455
[2]   Corrosion behaviour of AZ91D and AM50 magnesium alloys with Nd and Gd additions in humid environments [J].
Arrabal, R. ;
Matykina, E. ;
Pardo, A. ;
Merino, M. C. ;
Paucar, K. ;
Mohedano, M. ;
Casajus, P. .
CORROSION SCIENCE, 2012, 55 :351-362
[3]   Review of Recent Developments in the Field of Magnesium Corrosion [J].
Atrens, Andrej ;
Song, Guang-Ling ;
Liu, Ming ;
Shi, Zhiming ;
Cao, Fuyong ;
Dargusch, Matthew S. .
ADVANCED ENGINEERING MATERIALS, 2015, 17 (04) :400-453
[4]   Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy [J].
Aung, Naing Naing ;
Zhou, Wei .
CORROSION SCIENCE, 2010, 52 (02) :589-594
[5]   Corrosion behavior and mechanism of Mg-Y-Zn-Zr alloys with various Y/Zn mole ratios [J].
Bao, Lei ;
Zhang, Zhiqiang ;
Le, Qichi ;
Zhang, Sarula ;
Cui, Jianzhong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 712 :15-23
[6]   Grain character influences on corrosion of ECAPed pure magnesium [J].
Birbilis, N. ;
Ralston, K. D. ;
Virtanen, S. ;
Fraser, H. L. ;
Davies, C. H. J. .
CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2010, 45 (03) :224-230
[7]   On the corrosion of binary magnesium-rare earth alloys [J].
Birbilis, N. ;
Easton, M. A. ;
Sudholz, A. D. ;
Zhu, S. M. ;
Gibson, M. A. .
CORROSION SCIENCE, 2009, 51 (03) :683-689
[8]   Effect of Crystallographic Orientation on the Corrosion of Magnesium: Comparison of Film Forming and Bare Crystal Facets using Electrochemical Impedance and Raman Spectroscopy [J].
Bland, Leslie G. ;
Gusieva, K. ;
Scully, J. R. .
ELECTROCHIMICA ACTA, 2017, 227 :136-151
[9]   THE ANALYSIS OF ELECTRODE IMPEDANCES COMPLICATED BY THE PRESENCE OF A CONSTANT PHASE ELEMENT [J].
BRUG, GJ ;
VANDENEEDEN, ALG ;
SLUYTERSREHBACH, M ;
SLUYTERS, JH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 176 (1-2) :275-295
[10]   Effect of anodic T phase on surface micro-galvanic corrosion of biodegradable Mg-Zn-Zr-Nd alloys [J].
Cai, Changhong ;
Song, Renbo ;
Wang, Luanxiang ;
Li, Jingyuan .
APPLIED SURFACE SCIENCE, 2018, 462 :243-254