A STRUCTURAL DECOMPOSITION APPROACH TO COMPARING MRIO DATABASES

被引:125
作者
Owen, Anne [1 ]
Steen-Olsen, Kjartan [2 ,3 ]
Barrett, John [1 ]
Wiedmann, Thomas [4 ,5 ]
Lenzen, Manfred [5 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England
[2] Norwegian Univ Sci & Technol NTNU, Ind Ecol Programme, Trondheim, Norway
[3] Norwegian Univ Sci & Technol NTNU, Dept Energy & Proc Engn, Trondheim, Norway
[4] UNSW Australia, Sch Civil & Environm Engn, Sydney, NSW, Australia
[5] Univ Sydney, Sch Phys A28, Ctr Integrated Sustainabil Anal, Sydney, NSW 2006, Australia
基金
英国工程与自然科学研究理事会;
关键词
Multiregional input-output databases; Variation; Uncertainty; Structural decomposition analysis; Consumption-based accounting; Model comparison; GREENHOUSE-GAS EMISSIONS; CARBON-DIOXIDE EMISSIONS; GROWING CO2 EMISSIONS; INPUT-OUTPUT-ANALYSIS; ENERGY USE; INTERNATIONAL-TRADE; CONSUMPTION; CHINA; FOOTPRINT; DRIVERS;
D O I
10.1080/09535314.2014.935299
中图分类号
F [经济];
学科分类号
02 ;
摘要
The construction of multi-regional input-output tables is complex, and databases produced using different approaches lead to different analytical outcomes. We outline a decomposition methodology for investigating the variations that exist when using different multiregional input-output (MRIO) systems to calculate a region's consumption-based account. Structural decomposition analysis attributes the change in emissions to a set of dependent determinants, such as technical coefficients, the Leontief inverse and final demands. We apply our methodology to three MRIO databases - Eora, GTAP and WIOD. Findings reveal that the variation between Eora and GTAP can be attributed to differences in the Leontief inverse and emissions' data, whereas the variation between Eora and WIOD is due to differences in final demand and the Leontief inverse. For the majority of regions, GTAP and WIOD produce similar results. The approach in this study could help move MRIO databases from the academic arena to a useful policy instrument.
引用
收藏
页码:262 / 283
页数:22
相关论文
共 64 条
[1]   A synthesis of carbon dioxide emissions from fossil-fuel combustion [J].
Andres, R. J. ;
Boden, T. A. ;
Breon, F. -M. ;
Ciais, P. ;
Davis, S. ;
Erickson, D. ;
Gregg, J. S. ;
Jacobson, A. ;
Marland, G. ;
Miller, J. ;
Oda, T. ;
Olivier, J. G. J. ;
Raupach, M. R. ;
Rayner, P. ;
Treanton, K. .
BIOGEOSCIENCES, 2012, 9 (05) :1845-1871
[2]  
Andrew R. M., 2012, BIOGEOSCIENCES DISCU, V9, P3949, DOI DOI 10.5194/BGD-9-3949-2012
[3]   A MULTI-REGION INPUT-OUTPUT TABLE BASED ON THE GLOBAL TRADE ANALYSIS PROJECT DATABASE (GTAP-MRIO) [J].
Andrew, Robbie M. ;
Peters, Glen P. .
ECONOMIC SYSTEMS RESEARCH, 2013, 25 (01) :99-121
[4]  
[Anonymous], 1992, UN FRAMEWORK CONVENT
[5]  
[Anonymous], 2010, GLOBAL CARBON FOOTPR
[6]  
[Anonymous], 89 CTR CLIM CHANG EC
[7]   Understanding Changes in the UK's CO2 Emissions: A Global Perspective [J].
Baiocchi, Giovanni ;
Minx, Jan C. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (04) :1177-1184
[8]   Consumption-based GHG emission accounting: a UK case study [J].
Barrett, John ;
Peters, Glen ;
Wiedmann, Thomas ;
Scott, Kate ;
Lenzen, Manfred ;
Roelich, Katy ;
Le Quere, Corinne .
CLIMATE POLICY, 2013, 13 (04) :451-470
[9]  
Bjerkholt O., 2006, Economic Systems Research, V18, P331, DOI DOI 10.1080/09535310601020850
[10]   Drivers of greenhouse gas emissions in the Baltic States: A structural decomposition analysis [J].
Brizga, Janis ;
Feng, Kuishuang ;
Hubacek, Klaus .
ECOLOGICAL ECONOMICS, 2014, 98 :22-28