Three-dimensional cell model analyses of void growth in ductile materials

被引:132
作者
Kuna, M
Sun, DZ
机构
[1] Fraunhofer-Institute for Mechanics of Materials, D-79108 Freiburg
关键词
ductile fracture; damage mechanics; micromechanics; void growth;
D O I
10.1007/BF00039573
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional micromechanical models were developed to study the damage by void growth in ductile materials. Special emphasis is given to the influence of the spatial arrangement of the voids. Therefore, periodical void arrays of cubic primitive, body centered cubic and hexagona structure are investigated by analyzing representative unit cells. The isotropic behaviour of the matrix material is modelled using either v. Mises plasticity or the modified Gurson-Tvergaard constitutive law. The cell models are analyzed by the large strain finite element method under monotonic loading while keeping the stress triaxiality constant. The obtained mesoscopic deformation response and the void growth of the unit cells show a high dependence on the value of triaxiality. The spatial arrangement has only a weak influence on the deformation behaviour, whereas the type and onset of the plastic collapse behaviour are strongly affected. The parameters of the Gurson-Tvergaard model can be calibrated to the cell model results even for large porosity, emphasizing its usefulness and justifying its broad applicability.
引用
收藏
页码:235 / 258
页数:24
相关论文
共 21 条
[1]  
ABAQUS, 1994, ABAQUS THEOR MAN VER
[2]   ANALYSIS OF A MODEL FOR VOID GROWTH AND COALESCENCE AHEAD OF A MOVING CRACK TIP [J].
ANDERSSON, H .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1977, 25 (03) :217-233
[3]   FINITE-ELEMENT ANALYSIS OF VOID GROWTH NEAR A BLUNTING CRACK TIP [J].
ARAVAS, N ;
MCMEEKING, RM .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1985, 33 (01) :25-49
[4]   THE INFLUENCE OF POROSITY ON THE DEFORMATION AND FRACTURE OF ALLOYS [J].
BOURCIER, RJ ;
KOSS, DA ;
SMELSER, RE ;
RICHMOND, O .
ACTA METALLURGICA, 1986, 34 (12) :2443-2453
[5]   Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials [J].
Brocks, W ;
Sun, DZ ;
Honig, A .
INTERNATIONAL JOURNAL OF PLASTICITY, 1995, 11 (08) :971-989
[6]  
BROCKS W, 1995, DFG REPORT ANWENDUNG
[7]   DUCTILE FRACTURE [J].
GARRISON, WM ;
MOODY, NR .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1987, 48 (11) :1035-1074
[8]   CONTINUUM THEORY OF DUCTILE RUPTURE BY VOID NUCLEATION AND GROWTH .1. YIELD CRITERIA AND FLOW RULES FOR POROUS DUCTILE MEDIA [J].
GURSON, AL .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1977, 99 (01) :2-15
[9]   VOID GROWTH AND COALESCENCE IN POROUS PLASTIC SOLIDS [J].
KOPLIK, J ;
NEEDLEMAN, A .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1988, 24 (08) :835-853
[10]   A CRITERION FOR DUCTILE FRACTURE BY GROWTH OF HOLES [J].
MCCLINTOCK, FA .
JOURNAL OF APPLIED MECHANICS, 1968, 35 (02) :363-+