A Matrix Differential Harnack Estimate for a Class of Ultraparabolic Equations

被引:2
作者
Huang, Hong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Key Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
Ultraparabolic equation; Matrix differential Harnack estimate; Maximum principle;
D O I
10.1007/s11118-014-9393-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let u be a positive solution of the ultraparabolic equation partial derivative(t)u Sigma(kn)(i=1) partial derivative(2)(xi)u Sigma(k)(i=1) x(i)partial derivative(xn) (i)u on R-n (k) x 0 T where 1 <= k <= n and 0 < T <= infinity. Assume that u and its derivatives (w.r.t. the space variables) up to the second order are bounded on any compact subinterval of (0, T). Then the difference H(log u) - H (log f) of the Hessian matrices of log u and of log f (both w.r.t. the space variables) is non-negatively definite, where f is the fundamental solution of the above equation with pole at the origin (0, 0). The estimate in the case n = k = 1 is due to Hamilton. As a corollary we get that , where l = log u, and Delta Sigma(n)(i) 1(k) partial derivative(2)(xi).
引用
收藏
页码:771 / 782
页数:12
相关论文
共 14 条
  • [1] [Anonymous], 2009, B SOC ESP MAT APL
  • [2] ON HARNACK INEQUALITIES FOR THE KAHLER-RICCI FLOW
    CAO, HD
    [J]. INVENTIONES MATHEMATICAE, 1992, 109 (02) : 247 - 263
  • [3] Matrix Li-Yau-Hamilton estimates for the heat equation on Kahler manifolds
    Cao, HD
    Ni, L
    [J]. MATHEMATISCHE ANNALEN, 2005, 331 (04) : 795 - 807
  • [4] A Note on Harnack Inequalities and Propagation Sets for a Class of Hypoelliptic Operators
    Cinti, Chiara
    Nystrom, Kaj
    Polidoro, Sergio
    [J]. POTENTIAL ANALYSIS, 2010, 33 (04) : 341 - 354
  • [5] Hamilton R., 2011, GEOMETRY ANAL, V17, P329
  • [6] Hamilton R.S., 1993, COMMUN ANAL GEOM, V1, P127
  • [7] Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
  • [8] HAMILTON RS, 1993, J DIFFER GEOM, V37, P225
  • [9] HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS
    HORMANDE.L
    [J]. ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4): : 147 - &
  • [10] Lanconelli E, 2002, INT MATH SER N Y, V2, P243