Special test configuration and K-stability of Fanco varities

被引:108
作者
Li, Chi [1 ]
Xu, Chenyang [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Beijing Int Ctr Math Res, Beijing, Peoples R China
关键词
KAHLER-EINSTEIN METRICS; RATIONAL CONNECTEDNESS; DEGENERATIONS; VARIETIES; EXISTENCE; MANIFOLDS; MODELS;
D O I
10.4007/annals.2014.180.1.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any flat projective family (X,L) -> C such that the generic fibre X-eta is a klt Q-Fanco variety and L vertical bar(X eta) similar to(Q) -K-X eta , we use the techniques from the minimal model program (MMP) to modify family. The end product is a family such that every fiber is a kit Q-Fanco variety. Moreover, we can prove that the Donaldson-Futski invariants of the appearing models decrease. When the family is a test configuration of a fixed Fanco variety (X,-K-X), this implies Tian's conjecture: given X a Fanco manifold, to test its K-(semi, poly)stability, we only need to test on the special test configurations.
引用
收藏
页码:197 / 232
页数:36
相关论文
共 42 条
  • [1] Alexeev V, 1996, HIGHER DIMENSIONAL COMPLEX VARIETIES, P1
  • [2] Andreatta M, 2001, OSAKA J MATH, V38, P151
  • [3] [Anonymous], 2007, Ann. of Math. Stud., DOI DOI 10.1515/9781400827800
  • [4] [Anonymous], ARXIV12114669
  • [5] [Anonymous], 1973, Toroidal embeddings
  • [6] [Anonymous], 1998, Cambridge Tracts in Mathematics
  • [7] [Anonymous], 2012, Metric and differential geometry
  • [8] Singularities and K-semistability
    Arezzo, Claudio
    Della Vedova, Alberto
    La Nave, Gabriele
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (04) : 849 - 869
  • [9] Barth W. P., 2004, Compact Complex Surfaces, DOI [10.1007/978-3-642-57739-0, DOI 10.1007/978-3-642-57739-0]
  • [10] EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE
    Birkar, Caucher
    Cascini, Paolo
    Hacon, Christopher D.
    McKernan, James
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) : 405 - 468