SILVER: an efficient tool for stable isotope labeling LC-MS data quantitative analysis with quality control methods

被引:18
作者
Chang, Cheng [1 ,2 ]
Zhang, Jiyang [3 ]
Han, Mingfei [1 ,2 ]
Ma, Jie [1 ,2 ]
Zhang, Wei [3 ]
Wu, Songfeng [1 ,2 ]
Liu, Kehui [1 ,2 ]
Xie, Hongwei [3 ]
He, Fuchu [1 ,2 ,4 ]
Zhu, Yunping [1 ,2 ]
机构
[1] Inst Radiat Med, Natl Ctr Prot Sci Beijing, Beijing Proteome Res Ctr, Dept Bioinformat,State Key Lab Prote, Beijing 102206, Peoples R China
[2] Natl Engn Res Ctr Prot Drugs, Dept Bioinformat, Beijing 102206, Peoples R China
[3] Natl Univ Def Technol, Coll Mechatron & Automat, Dept Automat Control, Changsha 410073, Hunan, Peoples R China
[4] Fudan Univ, Inst Biomed Sci, Dept Chem, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金;
关键词
MASS-SPECTROMETRY; PEPTIDE IDENTIFICATIONS; PROTEIN QUANTIFICATION; SOFTWARE TOOL; CELL-CULTURE; AMINO-ACIDS; PROTEOMICS; ACCURACY; RANGE;
D O I
10.1093/bioinformatics/btt726
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With the advance of experimental technologies, different stable isotope labeling methods have been widely applied to quantitative proteomics. Here, we present an efficient tool named SILVER for processing the stable isotope labeling mass spectrometry data. SILVER implements novel methods for quality control of quantification at spectrum, peptide and protein levels, respectively. Several new quantification confidence filters and indices are used to improve the accuracy of quantification results. The performance of SILVER was verified and compared with MaxQuant and Proteome Discoverer using a large-scale dataset and two standard datasets. The results suggest that SILVER shows high accuracy and robustness while consuming much less processing time. Additionally, SILVER provides user-friendly interfaces for parameter setting, result visualization, manual validation and some useful statistics analyses.
引用
收藏
页码:586 / 587
页数:2
相关论文
共 50 条
[41]   Quality evaluation of LC-MS/MS-based E. coli H antigen typing (MS-H) through label-free quantitative data analysis in a clinical sample setup [J].
Cheng, Keding ;
Sloan, Angela ;
McCorrister, Stuart ;
Peterson, Lorea ;
Chui, Huixia ;
Drebot, Mike ;
Nadon, Celine ;
Knox, J. David ;
Wang, Gehua .
PROTEOMICS CLINICAL APPLICATIONS, 2014, 8 (11-12) :963-970
[42]   A New LC-MS/MS-Based Method for the Simultaneous Detection of α-Tocopherol and Its Long-Chain Metabolites in Plasma Samples Using Stable Isotope Dilution Analysis [J].
Maxones, Alexander ;
Beck, Eva ;
Rimbach, Gerald ;
Birringer, Marc .
PHARMACEUTICALS, 2024, 17 (11)
[43]   A rapid and efficient analytical method for the quantification of a novel anticholinergic compound, R-phencynonate, by stable isotope-dilution LC-MS/MS and its application to bioavailability and dose proportionality studies [J].
Li, Jinglai ;
Liao, Sha ;
Wang, Xiaoying ;
Liu, Qian ;
Meng, Fei ;
Zhang, Wenpeng ;
Zhang, Tianhong ;
Yang, Cuiping ;
Song, Xinyi ;
Luo, Huan ;
Wang, Juan ;
Li, Zheng ;
Zhong, Bohua ;
Zhang, Zhenqing .
BIOMEDICAL CHROMATOGRAPHY, 2017, 31 (05)
[44]   A simultaneous identification and quantification strategy for determination of sulfhydryl-containing metabolites in normal- and high-fat diet hamsters using stable isotope labeling combined with LC-MS [J].
Chang, Lu ;
Lin, Feifei ;
Cheng, Kai ;
Li, Jiaomeng ;
Sun, Xiaochu ;
Figeys, Daniel ;
Jiang, Jianlan ;
Ye, Yang ;
Liu, Jia .
ANALYTICA CHIMICA ACTA, 2021, 1184
[45]   Design and implementation of software for automated quality control and data analysis for a complex LC/MS/MS assay for urine opiates and metabolites [J].
Dickerson, Jane A. ;
Schmeling, Michael ;
Hoofnagle, Andrew N. ;
Hoffman, Noah G. .
CLINICA CHIMICA ACTA, 2013, 415 :290-294
[46]   Comprehensive and semi-quantitative analysis of carboxyl-containing metabolites related to gut microbiota on chronic kidney disease using 2-picolylamine isotopic labeling LC-MS/MS [J].
Kanemitsu, Yoshitomi ;
Mishima, Eikan ;
Maekawa, Masamitsu ;
Matsumoto, Yotaro ;
Saigusa, Daisuke ;
Yamaguchi, Hiroaki ;
Ogura, Jiro ;
Tsukamoto, Hiroki ;
Tomioka, Yoshihisa ;
Abe, Takaaki ;
Mano, Nariyasu .
SCIENTIFIC REPORTS, 2019, 9 (1)
[47]   Exploring the Correlation between LC-MS Multi-Attribute Method and Conventional Chromatographic Product Quality Assays through Multivariate Data Analysis [J].
Jiang, Tingting ;
Kwofie, Francis ;
Attanasio, Nick ;
Haas, Matthew ;
Higgins, John ;
Kosanam, Hari .
AAPS JOURNAL, 2024, 27 (01)
[48]   Use of LC-MS for the quantitative analysis of (poly)phenol metabolites does not necessarily yield accurate results: Implications for assessing existing data and conducting future research [J].
Ottaviani, Javier I. ;
Fong, Reedmond Y. ;
Borges, Gina ;
Schroeter, Hagen ;
Crozier, Alan .
FREE RADICAL BIOLOGY AND MEDICINE, 2018, 124 :97-103
[49]   Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis [J].
Dugo, Laura ;
Russo, Marina ;
Cacciola, Francesco ;
Mandolfino, Filippo ;
Salafia, Fabio ;
Vilmercati, Alessandra ;
Fanali, Chiara ;
Casale, Monica ;
De Gara, Laura ;
Dugo, Paola ;
Mondello, Luigi ;
Rigano, Francesca .
FOOD ANALYTICAL METHODS, 2020, 13 (05) :1027-1041
[50]   Quantitative MALDI-TOF-MS Using Stable-isotope Labeling: Application to the Analysis of N-glycans of Recombinant α-1 Antitrypsin Produced Using Different Culture Parameters [J].
Blanchard, Veronique ;
Kaup, Matthias ;
Eigel, Susann ;
Rieck, Silke ;
Sandig, Volker ;
Marx, Uwe ;
Tauber, Rudolf ;
Berger, Markus .
JOURNAL OF CARBOHYDRATE CHEMISTRY, 2011, 30 (4-6) :320-333