Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM

被引:100
作者
Lopez, J. D. [1 ]
Litvak, V. [2 ]
Espinosa, J. J. [3 ]
Friston, K.J. [2 ]
Barnes, G. R. [2 ]
机构
[1] Univ Antioquia, Dept Ingn Elect, Medellin, Colombia
[2] UCL, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[3] Univ Nacl Colombia, Medellin, Colombia
基金
英国惠康基金;
关键词
MEG/EEG inverse problem; Multiple Sparse Priors; Free energy; Bayesian model selection; EEG SOURCE LOCALIZATION; ELECTROMAGNETIC TOMOGRAPHY; ELECTRICAL-ACTIVITY; INVERSE PROBLEM; MEG; PRIORS; SIMULATION; FRAMEWORK; FMRI;
D O I
10.1016/j.neuroimage.2013.09.002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:476 / 487
页数:12
相关论文
共 56 条
[1]   Bayesian analysis of the neuromagnetic inverse problem with lp-norm priors [J].
Auranen, T ;
Nummenmaa, A ;
Hämäläinen, MS ;
Jääskeläinen, IP ;
Lampinen, J ;
Vehtari, A ;
Sams, M .
NEUROIMAGE, 2005, 26 (03) :870-884
[2]   A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem [J].
Baillet, S ;
Garnero, L .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (05) :374-385
[3]   Electromagnetic brain mapping [J].
Baillet, S ;
Mosher, JC ;
Leahy, RM .
IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) :14-30
[4]   Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches [J].
Belardinelli, Paolo ;
Ortiz, Erick ;
Barnes, Gareth ;
Noppeney, Uta ;
Preissl, Hubert .
PLOS ONE, 2012, 7 (12)
[5]  
Berger J.O., 1985, Statistical decision theory and Bayesian analysis, V2nd
[6]   Tensor-based cortical surface morphometry via weighted spherical harmonic representation [J].
Chung, Moo K. ;
Dalton, Kim M. ;
Davidson, Richard. L. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (08) :1143-1151
[7]   Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity [J].
Dale, AM ;
Liu, AK ;
Fischl, BR ;
Buckner, RL ;
Belliveau, JW ;
Lewine, JD ;
Halgren, E .
NEURON, 2000, 26 (01) :55-67
[8]   IMPROVED LOCALIZATION OF CORTICAL ACTIVITY BY COMBINING EEG AND MEG WITH MRI CORTICAL SURFACE RECONSTRUCTION - A LINEAR-APPROACH [J].
DALE, AM ;
SERENO, MI .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1993, 5 (02) :162-176
[9]   Bayesian decoding of brain images [J].
Friston, Karl J. ;
Chu, Carlton ;
Mourao-Miranda, Janaina ;
Hulme, Oliver ;
Rees, Geraint ;
Penny, Will ;
Ashburner, John .
NEUROIMAGE, 2008, 39 (01) :181-205
[10]   Multiple sparse priors for the M/EEG inverse problem [J].
Friston, Karl J. ;
Harrison, Lee ;
Daunizeau, Jean ;
Kiebel, Stefan ;
Phillips, Christophe ;
Trujillo-Barreto, Nelson ;
Henson, Richard ;
Flandin, Guillaume ;
Mattout, Jeremie .
NEUROIMAGE, 2008, 39 (03) :1104-1120