The numerical solution of the radial Schrodinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods

被引:67
作者
Psihoyios, G.
Simos, T. E.
机构
[1] Univ Buckingham, Clore Lab, Buckingham MK18 1EG, England
[2] Univ Peloponnese, Fac Sci & Technol, Dept Comp Sci & Techol, GR-22100 Tripolis, Greece
关键词
trigonometric fitting; Predictor-Corrector methods; Schrodinger equation;
D O I
10.1007/s10910-006-9168-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we develop new seventh order trigonometrically fitted Adams-Bashforth-Moulton predictor-corrector (P-C) algorithms. Our predictor is based on the sixth algebraic order Adams-Bashforth scheme and our corrector on the seventh algebraic order Adams-Moulton scheme. In order to assess the efficiency of our new methods, we contacted appropriate comparisons of our schemes against well known methods and the numerical experimentations demonstrated that our schemes behave more efficiently.
引用
收藏
页码:269 / 293
页数:25
相关论文
共 50 条
[1]   Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation [J].
Anastassi, ZA ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) :281-293
[2]  
[Anonymous], APPL NUM ANAL COMP M
[3]  
[Anonymous], ATOMIC STRUCTURE COM
[4]   Embedded eighth order methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1999, 26 (04) :327-341
[5]   New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrodinger equation [J].
Avdelas, G ;
Kefalidis, E ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2002, 31 (04) :371-404
[6]   A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrodinger equation. Part 2. Development of the generator; optimization of the generator and numerical results [J].
Avdelas, G ;
Konguetsof, A ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 29 (04) :293-305
[7]   A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrodinger equation. Part 1. Development of the basic method [J].
Avdelas, G ;
Konguetsof, A ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 29 (04) :281-291
[8]  
Dormand J., 1980, J. Comput. Appl. Math., V6, P19, DOI DOI 10.1016/0771-050X(80)90013-3
[9]  
Gordon M., 1975, COMPUTER SOLUTIONS O
[10]  
Ixaru L. G., 1984, NUMERICAL METHODS DI