Locality with staggered fermions

被引:35
作者
Bunk, B
Della Morte, M
Jansen, K
Knechtli, F
机构
[1] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[2] DESY, NIC, D-15738 Zeuthen, Germany
关键词
D O I
10.1016/j.nuclphysb.2004.07.023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We address the locality problem arising in simulations, which take the square root of the staggered fermion determinant as a Boltzmann weight to reduce the number of dynamical quark tastes. A definition of such a theory necessitates an underlying local fermion operator with the same determinant and the corresponding Green's functions to establish causality and unitarity. We illustrate this point by studying analytically and numerically the square root of the staggered fermion operator. Although it has the correct weight, this operator is non-local in the continuum limit. Our work serves as a warning that fundamental properties of field theories might be violated when employing blindly the square root trick. The question, whether a local operator reproducing the square root of the staggered fermion determinant exists, is left open. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:343 / 362
页数:20
相关论文
共 50 条
[31]   Penguin diagrams for the HYP staggered fermions [J].
Choi, KS ;
Lee, WJ .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 :438-440
[32]   SIMULATION OF STAGGERED FERMIONS BY POLYMER AVERAGING [J].
MONTVAY, I .
PHYSICS LETTERS B, 1989, 227 (02) :260-265
[33]   Noncommutative geometry of lattice and staggered fermions [J].
Dai, J ;
Song, XC .
PHYSICS LETTERS B, 2001, 508 (3-4) :385-391
[34]   IDEALIZED MULTIGRID ALGORITHM FOR STAGGERED FERMIONS [J].
KALKREUTER, T .
PHYSICAL REVIEW D, 1993, 48 (05) :R1926-R1930
[35]   Multigrid algorithm for staggered lattice fermions [J].
Brower, Richard C. ;
Weinberg, Evan ;
Clark, M. A. ;
Strelchenko, Alexei .
PHYSICAL REVIEW D, 2018, 97 (11)
[36]   The Schwinger model with perfect staggered fermions [J].
Bietenholz, W ;
Dilger, H .
NUCLEAR PHYSICS B, 1999, 549 (1-2) :335-363
[37]   Calculating ε′/ε using HYP staggered fermions [J].
Bhattacharya, T ;
Fleming, GT ;
Gupta, R ;
Kilcup, G ;
Lee, W ;
Sharpe, S .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 140 :369-371
[38]   PARTIALLY QUENCHED QCD AND STAGGERED FERMIONS [J].
BERNARD, C ;
GOLTERMAN, M .
NUCLEAR PHYSICS B, 1994, :331-333
[39]   Majorana fermions and non-locality [J].
Campbell, Earl T. ;
Hoban, Matty J. ;
Eisert, Jens .
Quantum Information and Computation, 2014, 14 (11-12) :981-995
[40]   Fast evaluation and locality of overlap fermions [J].
Bietenholz, W ;
Hip, I ;
Schilling, K .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 :829-831